using Pumas
using PharmaDatasets
using DataFramesMeta
using PumasUtilities
Calculating Parameter Uncertainty
1 Introduction
A typical workflow for fitting a Pumas model and deriving parameter precision typically involves:
- Preparing the data and the model.
- Checking model-data compatibility.
- Obtaining initial parameter estimates.
- Fitting the model via a chosen estimation method.
- Interpreting the fit results.
- Computing parameter uncertainty based on the asymptotic variance-covariance formulas (robust or not).
- (Optionally) proceeding with more advanced techniques like bootstrapping or SIR for robust uncertainty quantification.
In previous tutorials, we already set up the data and performed a fit. We also obtained some parameter uncertainty estimates. In this tutorial, we will go more into depth with parameter uncertainty calculations using different methods. Exploratory data analysis (EDA), although extremely important, is out of scope here. Readers interested in EDA are encouraged to consult other tutorials.
2 Model and Data
2.1 Model Definition
Below is the PK model, named warfarin_pk_model
, defined in Pumas. This model contains:
- Fixed effects (population parameters):
pop_CL, pop_Vc, pop_tabs, pop_lag
- Inter-individual variability (IIV) components:
pk_Ω
- Residual error model parameters:
σ_prop
,σ_add
- Covariates for scaling:
FSZCL
andFSZV
- Differential equations describing the PK behavior in the compartments.
= @model begin
warfarin_pk_model @metadata begin
= "Warfarin 1-compartment PK model (PD removed)"
desc = u"hr"
timeu end
@param begin
# PK parameters
"""
Clearance (L/hr)
"""
∈ RealDomain(lower = 0.0, init = 0.134)
pop_CL """
Central volume (L)
"""
∈ RealDomain(lower = 0.0, init = 8.11)
pop_Vc """
Absorption lag time (hr)
"""
∈ RealDomain(lower = 0.0, init = 0.523)
pop_tabs """
Lag time (hr)
"""
∈ RealDomain(lower = 0.0, init = 0.1)
pop_lag # Inter-individual variability
"""
- ΩCL: Clearance
- ΩVc: Central volume
- Ωtabs: Absorption lag time
"""
∈ PDiagDomain([0.01, 0.01, 0.01])
pk_Ω # Residual variability
"""
σ_prop: Proportional error
"""
∈ RealDomain(lower = 0.0, init = 0.00752)
σ_prop """
σ_add: Additive error
"""
∈ RealDomain(lower = 0.0, init = 0.0661)
σ_add end
@random begin
~ MvNormal(pk_Ω) # mean = 0, covariance = pk_Ω
pk_η end
@covariates begin
"""
FSZCL: Clearance scaling factor
"""
FSZCL"""
FSZV: Volume scaling factor
"""
FSZVend
@pre begin
= FSZCL * pop_CL * exp(pk_η[1])
CL = FSZV * pop_Vc * exp(pk_η[2])
Vc = pop_tabs * exp(pk_η[3])
tabs = log(2) / tabs
Ka end
@dosecontrol begin
= (Depot = pop_lag,)
lags end
@vars begin
:= Central / Vc
cp end
@dynamics Depots1Central1
@derived begin
"""
Concentration (ng/mL)
"""
~ @. Normal(cp, sqrt((σ_prop * cp)^2 + σ_add^2))
conc end
end
PumasModel
Parameters: pop_CL, pop_Vc, pop_tabs, pop_lag, pk_Ω, σ_prop, σ_add
Random effects: pk_η
Covariates: FSZCL, FSZV
Dynamical system variables: Depot, Central
Dynamical system type: Closed form
Derived: conc
Observed: conc
2.2 Data Preparation
The Warfarin data used in this tutorial is pulled from PharmaDatasets
for demonstration purposes. Note how the code reshapes and prepares the data in “wide” format for reading into Pumas. Only the conc
column is treated as observations for the PK model.
= dataset("pumas/warfarin_pumas")
warfarin_data
# Transform the data in a single chain of operations
= @chain warfarin_data begin
warfarin_data_scales @rtransform begin
# Scaling factors
:FSZV = :wtbl / 70 # volume scaling
:FSZCL = (:wtbl / 70)^0.75 # clearance scaling (allometric)
end
end
Row | id | time | evid | amt | cmt | conc | pca | wtbl | age | sex | FSZV | FSZCL |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Int64 | Float64 | Int64 | Float64? | Int64? | Float64? | Float64? | Float64 | Int64 | String1 | Float64 | Float64 | |
1 | 1 | 0.0 | 1 | 100.0 | 1 | missing | missing | 66.7 | 50 | M | 0.952857 | 0.96443 |
2 | 1 | 0.5 | 0 | missing | missing | 0.0 | missing | 66.7 | 50 | M | 0.952857 | 0.96443 |
3 | 1 | 1.0 | 0 | missing | missing | 1.9 | missing | 66.7 | 50 | M | 0.952857 | 0.96443 |
4 | 1 | 2.0 | 0 | missing | missing | 3.3 | missing | 66.7 | 50 | M | 0.952857 | 0.96443 |
5 | 1 | 3.0 | 0 | missing | missing | 6.6 | missing | 66.7 | 50 | M | 0.952857 | 0.96443 |
6 | 1 | 6.0 | 0 | missing | missing | 9.1 | missing | 66.7 | 50 | M | 0.952857 | 0.96443 |
7 | 1 | 9.0 | 0 | missing | missing | 10.8 | missing | 66.7 | 50 | M | 0.952857 | 0.96443 |
8 | 1 | 12.0 | 0 | missing | missing | 8.6 | missing | 66.7 | 50 | M | 0.952857 | 0.96443 |
9 | 1 | 24.0 | 0 | missing | missing | 5.6 | 44.0 | 66.7 | 50 | M | 0.952857 | 0.96443 |
10 | 1 | 36.0 | 0 | missing | missing | 4.0 | 27.0 | 66.7 | 50 | M | 0.952857 | 0.96443 |
11 | 1 | 48.0 | 0 | missing | missing | 2.7 | 28.0 | 66.7 | 50 | M | 0.952857 | 0.96443 |
12 | 1 | 72.0 | 0 | missing | missing | 0.8 | 31.0 | 66.7 | 50 | M | 0.952857 | 0.96443 |
13 | 1 | 96.0 | 0 | missing | missing | missing | 60.0 | 66.7 | 50 | M | 0.952857 | 0.96443 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
319 | 32 | 48.0 | 0 | missing | missing | 6.9 | 24.0 | 62.0 | 21 | M | 0.885714 | 0.912999 |
320 | 32 | 72.0 | 0 | missing | missing | 4.4 | 23.0 | 62.0 | 21 | M | 0.885714 | 0.912999 |
321 | 32 | 96.0 | 0 | missing | missing | 3.5 | 20.0 | 62.0 | 21 | M | 0.885714 | 0.912999 |
322 | 32 | 120.0 | 0 | missing | missing | 2.5 | 22.0 | 62.0 | 21 | M | 0.885714 | 0.912999 |
323 | 33 | 0.0 | 1 | 100.0 | 1 | missing | missing | 66.7 | 50 | M | 0.952857 | 0.96443 |
324 | 33 | 0.0 | 0 | missing | missing | missing | 100.0 | 66.7 | 50 | M | 0.952857 | 0.96443 |
325 | 33 | 24.0 | 0 | missing | missing | 9.2 | 49.0 | 66.7 | 50 | M | 0.952857 | 0.96443 |
326 | 33 | 36.0 | 0 | missing | missing | 8.5 | 32.0 | 66.7 | 50 | M | 0.952857 | 0.96443 |
327 | 33 | 48.0 | 0 | missing | missing | 6.4 | 26.0 | 66.7 | 50 | M | 0.952857 | 0.96443 |
328 | 33 | 72.0 | 0 | missing | missing | 4.8 | 22.0 | 66.7 | 50 | M | 0.952857 | 0.96443 |
329 | 33 | 96.0 | 0 | missing | missing | 3.1 | 28.0 | 66.7 | 50 | M | 0.952857 | 0.96443 |
330 | 33 | 120.0 | 0 | missing | missing | 2.5 | 33.0 | 66.7 | 50 | M | 0.952857 | 0.96443 |
3 Creating a Pumas Population
Below is the creation of a population object in Pumas using read_pumas
. Only the conc
data are treated as the observation variable:
= read_pumas(
pop_pk
warfarin_data_scales;= :id,
id = :time,
time = :amt,
amt = :cmt,
cmt = :evid,
evid = [:sex, :wtbl, :FSZV, :FSZCL],
covariates = [:conc],
observations )
Population
Subjects: 32
Covariates: sex, wtbl, FSZV, FSZCL
Observations: conc
The same data can contain multiple endpoints or PD observations. In this tutorial, the focus is solely on PK fitting. PKPD modeling on this warfarin dataset will be introduced later.
Also note, that parameter inference can be expensive and for that reason we simplified the model for this tutorial to decrease overall runtime.
3.1 Obtaining fit results
Following the examples in previous tutorials, we perform a fit. We need the output of the fit
function call to perform inference to obtain parameter uncertainty estimates.
# A named tuple of parameter values
= (
param_vals = 0.134,
pop_CL = 8.11,
pop_Vc = 0.523,
pop_tabs = 0.1,
pop_lag = Diagonal([0.01, 0.01, 0.01]),
pk_Ω = 0.00752,
σ_prop = 0.0661,
σ_add
)= fit(warfarin_pk_model, pop_pk, param_vals, FOCE();) foce_fit
[ Info: Checking the initial parameter values. [ Info: The initial negative log likelihood and its gradient are finite. Check passed. Iter Function value Gradient norm 0 1.209064e+04 1.489225e+04 * time: 0.040174007415771484 1 2.643772e+03 3.167516e+03 * time: 1.6518681049346924 2 1.836601e+03 2.118430e+03 * time: 1.6754789352416992 3 9.351337e+02 8.722439e+02 * time: 1.699368953704834 4 6.402300e+02 4.199225e+02 * time: 1.7167229652404785 5 5.103664e+02 1.642121e+02 * time: 1.7334730625152588 6 4.760464e+02 5.453749e+01 * time: 1.7501270771026611 7 4.703757e+02 3.643518e+01 * time: 1.766023874282837 8 4.699019e+02 3.135992e+01 * time: 1.9424278736114502 9 4.697614e+02 2.953531e+01 * time: 1.958122968673706 10 4.693153e+02 2.463233e+01 * time: 1.9741499423980713 11 4.685743e+02 2.580427e+01 * time: 1.990570068359375 12 4.675133e+02 3.864937e+01 * time: 2.006901979446411 13 4.666775e+02 5.495470e+01 * time: 2.0232460498809814 14 4.661197e+02 5.692101e+01 * time: 2.039592981338501 15 4.656782e+02 4.770992e+01 * time: 2.055497884750366 16 4.651802e+02 3.087698e+01 * time: 2.0714120864868164 17 4.645523e+02 1.184834e+01 * time: 2.087682008743286 18 4.641447e+02 1.162249e+01 * time: 2.1036109924316406 19 4.639978e+02 1.125144e+01 * time: 2.119882106781006 20 4.639307e+02 1.156463e+01 * time: 2.1352150440216064 21 4.638001e+02 1.312870e+01 * time: 2.1508688926696777 22 4.635282e+02 1.480920e+01 * time: 2.1693289279937744 23 4.630353e+02 2.169377e+01 * time: 2.250530958175659 24 4.623847e+02 4.478029e+01 * time: 2.2672479152679443 25 4.617426e+02 6.468975e+01 * time: 2.2842118740081787 26 4.610293e+02 7.776996e+01 * time: 2.3015289306640625 27 4.597628e+02 8.785260e+01 * time: 2.319093942642212 28 4.566753e+02 9.769803e+01 * time: 2.3372249603271484 29 4.490421e+02 1.008838e+02 * time: 2.3560070991516113 30 4.391868e+02 9.978816e+01 * time: 2.3759450912475586 31 4.130704e+02 5.917685e+01 * time: 2.3956398963928223 32 4.055780e+02 3.852824e+01 * time: 2.4145100116729736 33 4.023118e+02 3.889618e+01 * time: 2.435878038406372 34 4.012516e+02 3.694778e+01 * time: 2.4673969745635986 35 4.004391e+02 2.061948e+01 * time: 2.5096659660339355 36 3.983040e+02 3.508423e+01 * time: 2.5285260677337646 37 3.969705e+02 3.841039e+01 * time: 2.5480399131774902 38 3.965462e+02 3.738343e+01 * time: 2.5665180683135986 39 3.950409e+02 3.064789e+01 * time: 2.586111068725586 40 3.945750e+02 2.876429e+01 * time: 2.604630947113037 41 3.937725e+02 2.571438e+01 * time: 2.6235079765319824 42 3.933955e+02 2.436112e+01 * time: 2.641603946685791 43 3.927564e+02 2.051069e+01 * time: 2.6593120098114014 44 3.916020e+02 1.629035e+01 * time: 2.6773688793182373 45 3.886991e+02 2.689824e+01 * time: 2.6980130672454834 46 3.870054e+02 2.298582e+01 * time: 2.733448028564453 47 3.853691e+02 2.614992e+01 * time: 2.752039909362793 48 3.841730e+02 2.207557e+01 * time: 2.7701950073242188 49 3.825113e+02 2.204399e+01 * time: 2.789194107055664 50 3.808880e+02 2.444784e+01 * time: 2.808298110961914 51 3.800407e+02 1.250611e+01 * time: 2.826965093612671 52 3.798092e+02 1.167926e+01 * time: 2.844964027404785 53 3.797789e+02 1.162382e+01 * time: 2.8627378940582275 54 3.797069e+02 1.152441e+01 * time: 2.8961780071258545 55 3.794424e+02 1.132717e+01 * time: 2.914180040359497 56 3.788131e+02 2.006438e+01 * time: 2.932313919067383 57 3.771525e+02 3.584695e+01 * time: 2.950850009918213 58 3.731299e+02 5.697249e+01 * time: 2.9696619510650635 59 3.658671e+02 6.542042e+01 * time: 2.9892330169677734 60 3.604194e+02 4.036489e+01 * time: 3.008502960205078 61 3.532841e+02 1.574006e+01 * time: 3.026911973953247 62 3.520181e+02 1.393300e+01 * time: 3.0579800605773926 63 3.517984e+02 6.701188e+00 * time: 3.0761570930480957 64 3.517541e+02 3.503978e+00 * time: 3.093985080718994 65 3.516436e+02 8.720957e+00 * time: 3.1134140491485596 66 3.511845e+02 1.406200e+01 * time: 3.138350009918213 67 3.510647e+02 2.540378e+00 * time: 3.156342029571533 68 3.510209e+02 3.157201e+00 * time: 3.1866378784179688 69 3.509959e+02 3.045642e+00 * time: 3.2033920288085938 70 3.509765e+02 2.673143e+00 * time: 3.2202560901641846 71 3.509751e+02 2.603975e+00 * time: 3.236598014831543 72 3.509724e+02 2.505719e+00 * time: 3.2529349327087402 73 3.509666e+02 2.379768e+00 * time: 3.2794270515441895 74 3.509504e+02 3.572030e+00 * time: 3.2963268756866455 75 3.509123e+02 6.006350e+00 * time: 3.313178062438965 76 3.508288e+02 8.822995e+00 * time: 3.3301520347595215 77 3.506944e+02 9.708012e+00 * time: 3.347249984741211 78 3.505767e+02 6.092631e+00 * time: 3.3646490573883057 79 3.505358e+02 1.734431e+00 * time: 3.3949480056762695 80 3.505314e+02 6.749379e-01 * time: 3.4115118980407715 81 3.505313e+02 6.721982e-01 * time: 3.4271841049194336 82 3.505312e+02 6.699487e-01 * time: 3.4424400329589844 83 3.505307e+02 6.606824e-01 * time: 3.4583170413970947 84 3.505298e+02 6.413909e-01 * time: 3.4847888946533203 85 3.505274e+02 9.083363e-01 * time: 3.5007948875427246 86 3.505222e+02 1.339147e+00 * time: 3.5171210765838623 87 3.505129e+02 1.608661e+00 * time: 3.5337939262390137 88 3.505026e+02 1.293164e+00 * time: 3.5504889488220215 89 3.504973e+02 5.140504e-01 * time: 3.56723690032959 90 3.504963e+02 6.340189e-02 * time: 3.5959079265594482 91 3.504963e+02 3.137914e-03 * time: 3.6115119457244873 92 3.504963e+02 5.681551e-04 * time: 3.6260008811950684
FittedPumasModel
Dynamical system type: Closed form
Number of subjects: 32
Observation records: Active Missing
conc: 251 47
Total: 251 47
Number of parameters: Constant Optimized
0 9
Likelihood approximation: FOCE
Likelihood optimizer: BFGS
Termination Reason: GradientNorm
Log-likelihood value: -350.49625
--------------------
Estimate
--------------------
pop_CL 0.13465
pop_Vc 8.0535
pop_tabs 0.55061
pop_lag 0.87158
pk_Ω₁,₁ 0.070642
pk_Ω₂,₂ 0.018302
pk_Ω₃,₃ 0.91326
σ_prop 0.090096
σ_add 0.39115
--------------------
3.2 Computing Parameter Precision with infer
The infer
function in Pumas estimates the uncertainty (precision) of parameter estimates. Depending on the chosen method, infer
can provide standard errors, confidence intervals, and correlation matrices.
The signature for infer
often looks like:
infer(
::FittedPumasModel;
fpm= 0.95,
level ::Bool = false,
rethrow_error::Bool = true,
sandwich_estimator )
where:
fpm::FittedPumasModel
: The result offit
(e.g.,foce_fit
).level
: The confidence interval level (e.g., 0.95). The confidence intervals are calculated as the(1-level)/2
and(1+level)/2
quantiles of the estimated parametersrethrow_error
: If rethrow_error is false (the default value), no error will be thrown if the variance-covariance matrix estimator fails. If it is true, an error will be thrown if the estimator fails.sandwich_estimator
: Whether to use the sandwich estimator also known as the robust variance-covariance estimator. If set totrue
(the default value), the sandwich estimator will be used. If set tofalse
, the standard error will be calculated using the inverse of the Hessian matrix calculated using finite difference derivatives of the gradient calculated using automatic differentiation.
An example usage:
= infer(foce_fit; level = 0.95) inference_results
[ Info: Calculating: variance-covariance matrix. [ Info: Done.
Asymptotic inference results using sandwich estimator
Dynamical system type: Closed form
Number of subjects: 32
Observation records: Active Missing
conc: 251 47
Total: 251 47
Number of parameters: Constant Optimized
0 9
Likelihood approximation: FOCE
Likelihood optimizer: BFGS
Termination Reason: GradientNorm
Log-likelihood value: -350.49625
---------------------------------------------------------
Estimate SE 95.0% C.I.
---------------------------------------------------------
pop_CL 0.13465 0.0066546 [ 0.12161 ; 0.1477 ]
pop_Vc 8.0535 0.22108 [ 7.6201 ; 8.4868 ]
pop_tabs 0.55061 0.18702 [ 0.18406 ; 0.91717 ]
pop_lag 0.87158 0.056687 [ 0.76048 ; 0.98269 ]
pk_Ω₁,₁ 0.070642 0.024577 [ 0.022472 ; 0.11881 ]
pk_Ω₂,₂ 0.018302 0.0051549 [ 0.0081988; 0.028406]
pk_Ω₃,₃ 0.91326 0.40637 [ 0.11678 ; 1.7097 ]
σ_prop 0.090096 0.014521 [ 0.061636 ; 0.11856 ]
σ_add 0.39115 0.065398 [ 0.26297 ; 0.51932 ]
---------------------------------------------------------
This is the usual asymptotic variance-covariance estimator and we already saw this previous tutorials.
To get a matrix representation of this, use vcov()
vcov(inference_results)
9×9 Symmetric{Float64, Matrix{Float64}}:
4.42841e-5 0.000217445 0.000302094 … 3.99916e-6 0.00019736
0.000217445 0.0488775 0.00571323 -0.000846166 -0.0056657
0.000302094 0.00571323 0.0349767 0.000227818 0.00412692
-7.40855e-5 -0.00207014 -0.00450616 0.000458813 0.000494683
0.000120614 5.09406e-5 0.00164596 -9.1424e-5 0.000734901
2.90008e-7 0.000292148 -0.000131446 … 3.99746e-6 1.80866e-5
-0.000263152 -0.023877 -0.0275659 0.00328879 0.0126135
3.99916e-6 -0.000846166 0.000227818 0.000210856 0.000518153
0.00019736 -0.0056657 0.00412692 0.000518153 0.00427687
and to get the condition number of the correlation matrix implied by vcov
use
cond(inference_results)
50.11623683487897
Some users request the condition number of the covariance matrix itself and even if the use is often misguided it can be calculated as well.
cond(inference_results; correlation = false)
13082.75373321667
It is also possible to calculate the correlation matrix from the vcov
output using the cov2cor
function
= cov2cor(vcov(inference_results)) cor_from_cov
9×9 Symmetric{Float64, Matrix{Float64}}:
1.0 0.147799 0.242733 … -0.0973098 0.0413859 0.453494
0.147799 1.0 0.138178 -0.265766 -0.263578 -0.391865
0.242733 0.138178 1.0 -0.362707 0.083889 0.337422
-0.196394 -0.165183 -0.425047 0.555027 0.557394 0.133439
0.737483 0.00937536 0.358102 -0.28125 -0.25618 0.45724
0.00845409 0.256348 -0.136345 … 0.315212 0.0534038 0.0536508
-0.0973098 -0.265766 -0.362707 1.0 0.557335 0.47462
0.0413859 -0.263578 0.083889 0.557335 1.0 0.545635
0.453494 -0.391865 0.337422 0.47462 0.545635 1.0
And we see that the cond
call above matches the condition number of the correlation matrix
cond(cor_from_cov)
50.1162368348788
3.2.1 Failure of the asymptotic variance-covariance matrix
It is well-known that the asymptotic variance-covariance matrix can sometimes fail to compute. This can happen for a variety of reasons including:
- There are parameters very close to a bound (often 0)
- The parameter vector does not represent a local minimum (optimization failed)
- The parameter vector does represent a local minimum but it’s not the global solution
The first one is often easy to check. The problematic parameters can be ones than have lower or upper bounds set. Often this will be a variance of standard deviation that has moved very close to the lower boundary. Consider removing the associated random effect if the problematic parameter is a variance in its specification or error model component if a combined additive and proportional error model is used and a standard deviation is close to zero.
It is also possible that the parameters do not represent a local minimum. In other words, they come from a failed fit. In this case, it can often be hard to perform the associated calculations in a stable way, but most importantly the results would not be interpretable even if they can be calculated in this case. The formulas are only valid for parameters that represent the actual (maximum likelihood) estimates. Please try to restart the optimization at different starting points in this case.
If you have reasons to believe that the model should indeed be a combined error model or if the random effect should be present it is also possible that the model converged to a local minimum that is not the global minimum. If the optimization happened to move to a region of the parameter state space that is hard to get out of you will often have to restart the fit at different parameter values. It is not possible to verify if the minimum is global in general, but it is always advised to try out more than one set of initial parameters when fitting models.
3.2.2 Bootstrap
Sometimes it is appropriate to use a different method to calculate estimate the uncertainty of the estimated parameters. Bootstrapping is a very popular approach that is simply but can often come a quite significant computational cost. Researchers often perform a bootstrapping step if their computational budget allows it or if the asymptotic variance-covariance estimator fails. Bootstrapping is advantageous because it does not rely on any invertability of matrices and it cannot produce negative variance confidence intervals because the resampled estimator respects the bounds of the model.
The signature for bootstrapping in infer
looks as follows.
infer(fpm::FittedPumasModel, bts::Bootstrap; level = 0.95)
This does not help much before also looking at the interface for Bootstrap
itself.
Bootstrap(;
= Random.default_rng,
rng = 200,
samples = nothing,
stratify_by = EnsembleThreads(),
ensemblealg )
Bootstrap
accepts a random number generator rng
, the number of resampled datasets to produce samples
, if sampling should be stratified according to the covariates in stratify_by
, and finally the ensemble algorithm to control parallelization across fits. On the JuliaHub platform this can be used together with distributed computing to perform many resampled estimations in a short time.
= infer(foce_fit, Bootstrap(samples = 50); level = 0.95) bootstrap_results
┌ Warning: Terminated early due to NaN in gradient. └ @ Optim ~/run/_work/PumasTutorials.jl/PumasTutorials.jl/custom_julia_depot/packages/Optim/7krni/src/multivariate/optimize/optimize.jl:117 ┌ Warning: Terminated early due to NaN in gradient. └ @ Optim ~/run/_work/PumasTutorials.jl/PumasTutorials.jl/custom_julia_depot/packages/Optim/7krni/src/multivariate/optimize/optimize.jl:117 ┌ Warning: Terminated early due to NaN in gradient. └ @ Optim ~/run/_work/PumasTutorials.jl/PumasTutorials.jl/custom_julia_depot/packages/Optim/7krni/src/multivariate/optimize/optimize.jl:117 ┌ Warning: Terminated early due to NaN in gradient. └ @ Optim ~/run/_work/PumasTutorials.jl/PumasTutorials.jl/custom_julia_depot/packages/Optim/7krni/src/multivariate/optimize/optimize.jl:117 ┌ Warning: Terminated early due to NaN in gradient. └ @ Optim ~/run/_work/PumasTutorials.jl/PumasTutorials.jl/custom_julia_depot/packages/Optim/7krni/src/multivariate/optimize/optimize.jl:117 ┌ Warning: Terminated early due to NaN in gradient. └ @ Optim ~/run/_work/PumasTutorials.jl/PumasTutorials.jl/custom_julia_depot/packages/Optim/7krni/src/multivariate/optimize/optimize.jl:117 ┌ Warning: Terminated early due to NaN in gradient. └ @ Optim ~/run/_work/PumasTutorials.jl/PumasTutorials.jl/custom_julia_depot/packages/Optim/7krni/src/multivariate/optimize/optimize.jl:117 ┌ Warning: Terminated early due to NaN in gradient. └ @ Optim ~/run/_work/PumasTutorials.jl/PumasTutorials.jl/custom_julia_depot/packages/Optim/7krni/src/multivariate/optimize/optimize.jl:117 ┌ Warning: Terminated early due to NaN in gradient. └ @ Optim ~/run/_work/PumasTutorials.jl/PumasTutorials.jl/custom_julia_depot/packages/Optim/7krni/src/multivariate/optimize/optimize.jl:117 ┌ Warning: Terminated early due to NaN in gradient. └ @ Optim ~/run/_work/PumasTutorials.jl/PumasTutorials.jl/custom_julia_depot/packages/Optim/7krni/src/multivariate/optimize/optimize.jl:117 ┌ Warning: Terminated early due to NaN in gradient. └ @ Optim ~/run/_work/PumasTutorials.jl/PumasTutorials.jl/custom_julia_depot/packages/Optim/7krni/src/multivariate/optimize/optimize.jl:117 ┌ Warning: Terminated early due to NaN in gradient. └ @ Optim ~/run/_work/PumasTutorials.jl/PumasTutorials.jl/custom_julia_depot/packages/Optim/7krni/src/multivariate/optimize/optimize.jl:117 ┌ Warning: Terminated early due to NaN in gradient. └ @ Optim ~/run/_work/PumasTutorials.jl/PumasTutorials.jl/custom_julia_depot/packages/Optim/7krni/src/multivariate/optimize/optimize.jl:117 ┌ Warning: Terminated early due to NaN in gradient. └ @ Optim ~/run/_work/PumasTutorials.jl/PumasTutorials.jl/custom_julia_depot/packages/Optim/7krni/src/multivariate/optimize/optimize.jl:117 ┌ Warning: Terminated early due to NaN in gradient. └ @ Optim ~/run/_work/PumasTutorials.jl/PumasTutorials.jl/custom_julia_depot/packages/Optim/7krni/src/multivariate/optimize/optimize.jl:117 ┌ Info: Bootstrap inference finished. │ Total resampled fits = 50 │ Success rate = 1.0 └ Unique resampled populations = 50
Bootstrap inference results
Dynamical system type: Closed form
Number of subjects: 32
Observation records: Active Missing
conc: 251 47
Total: 251 47
Number of parameters: Constant Optimized
0 9
Likelihood approximation: FOCE
Likelihood optimizer: BFGS
Termination Reason: GradientNorm
Log-likelihood value: -350.49625
--------------------------------------------------------
Estimate SE 95.0% C.I.
--------------------------------------------------------
pop_CL 0.13465 0.0069545 [ 0.12367 ; 0.14903 ]
pop_Vc 8.0535 1.3516 [ 7.6634 ; 8.5087 ]
pop_tabs 0.55061 0.21662 [ 0.15407 ; 0.97045 ]
pop_lag 0.87158 0.12747 [ 0.57722 ; 0.98395 ]
pk_Ω₁,₁ 0.070642 0.026192 [ 0.020862; 0.12609 ]
pk_Ω₂,₂ 0.018302 2.1748e14 [ 0.010253; 0.028208]
pk_Ω₃,₃ 0.91326 0.82661 [ 0.22948 ; 3.6351 ]
σ_prop 0.090096 0.017894 [ 0.059196; 0.11581 ]
σ_add 0.39115 0.096061 [ 0.21259 ; 0.52427 ]
--------------------------------------------------------
Successful fits: 50 out of 50
Unique resampled populations: 50
No stratification.
Again, we can calculate a covariance matrix based on the samples with vcov
vcov(bootstrap_results)
9×9 Symmetric{Float64, Matrix{Float64}}:
4.83649e-5 0.00156649 0.00064332 … 1.05506e-5 7.17266e-5
0.00156649 1.82695 0.0165899 0.0145297 -0.079902
0.00064332 0.0165899 0.0469264 0.000290836 0.00214464
-0.000335938 -0.0643749 -0.0148099 -0.000278331 0.00541825
0.000151952 0.0103243 0.00305516 7.50115e-5 0.00042322
2.00138e11 2.8966e14 1.55351e12 … 2.59113e12 -1.13065e13
-0.00123383 -0.234299 -0.115269 0.00163379 0.0224629
1.05506e-5 0.0145297 0.000290836 0.000320184 -0.000275124
7.17266e-5 -0.079902 0.00214464 -0.000275124 0.0092278
and we can even get a DataFrame
that includes all the estimated parameters from the sampled population fits
DataFrame(bootstrap_results.vcov)
Row | pop_CL | pop_Vc | pop_tabs | pop_lag | pk_Ω₁,₁ | pk_Ω₂,₂ | pk_Ω₃,₃ | σ_prop | σ_add |
---|---|---|---|---|---|---|---|---|---|
Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | |
1 | 0.126633 | 8.2454 | 0.208499 | 0.968698 | 0.0452462 | 0.022725 | 1.99566 | 0.0994534 | 0.297097 |
2 | 0.142345 | 17.4745 | 0.581171 | 0.559044 | 0.121901 | 1.53781e15 | 0.0522443 | 0.176482 | 3.47492e-83 |
3 | 0.129743 | 7.66233 | 0.321423 | 1.39319 | 0.043103 | 0.0176078 | 2.02135 | 0.116853 | 0.538741 |
4 | 0.129183 | 7.70203 | 0.171302 | 0.980253 | 0.0469575 | 0.0174372 | 2.24075 | 0.0939945 | 0.320679 |
5 | 0.139977 | 7.85534 | 0.882448 | 0.897065 | 0.100464 | 0.0137745 | 0.753898 | 0.106596 | 0.524524 |
6 | 0.141935 | 7.63955 | 0.651021 | 0.858456 | 0.100478 | 0.0131245 | 0.792246 | 0.104594 | 0.486655 |
7 | 0.137902 | 7.87941 | 0.365576 | 0.858931 | 0.0627549 | 0.0151161 | 0.909492 | 0.0916048 | 0.364872 |
8 | 0.137627 | 7.83692 | 0.325784 | 0.872645 | 0.0662821 | 0.0265132 | 1.95468 | 0.0995674 | 0.460847 |
9 | 0.126958 | 8.16407 | 0.507714 | 0.856218 | 0.0691286 | 0.0250932 | 1.43943 | 0.0793042 | 0.379192 |
10 | 0.122033 | 8.2395 | 0.621112 | 0.887475 | 0.0129473 | 0.0212474 | 1.17782 | 0.0984797 | 0.325865 |
11 | 0.133583 | 8.22255 | 0.184489 | 0.984979 | 0.0472109 | 0.0199437 | 3.59088 | 0.107138 | 0.36427 |
12 | 0.141037 | 8.14233 | 0.854026 | 0.841431 | 0.0919972 | 0.019965 | 0.510299 | 0.104021 | 0.442929 |
13 | 0.135681 | 8.25597 | 0.650823 | 0.809248 | 0.0644645 | 0.0207617 | 0.47461 | 0.0647908 | 0.3002 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
39 | 0.142109 | 7.84883 | 0.733299 | 0.783871 | 0.100401 | 0.0221625 | 0.869036 | 0.112195 | 0.467019 |
40 | 0.135565 | 8.21299 | 0.541418 | 0.852501 | 0.0767428 | 0.0158428 | 0.494233 | 0.0576773 | 0.34197 |
41 | 0.146009 | 8.15419 | 0.504974 | 0.872607 | 0.0944353 | 0.0204069 | 0.28735 | 0.0750978 | 0.359405 |
42 | 0.134025 | 7.86251 | 0.598954 | 0.570327 | 0.0590242 | 0.0152175 | 0.379982 | 0.0932072 | 0.29449 |
43 | 0.126411 | 7.86927 | 0.519056 | 0.799271 | 0.0431169 | 0.0148975 | 0.822717 | 0.098374 | 0.383894 |
44 | 0.134079 | 7.7316 | 0.680075 | 0.767894 | 0.0702705 | 0.0122202 | 0.67917 | 0.0988016 | 0.335701 |
45 | 0.142489 | 8.15711 | 0.149071 | 0.980388 | 0.0783335 | 0.0251218 | 3.64794 | 0.0918925 | 0.378353 |
46 | 0.130618 | 8.04156 | 0.247018 | 0.962794 | 0.0284484 | 0.018707 | 1.48227 | 0.0987609 | 0.221193 |
47 | 0.130291 | 8.37867 | 0.431187 | 0.879756 | 0.0588176 | 0.0127812 | 0.568111 | 0.0988174 | 0.239478 |
48 | 0.133382 | 7.71499 | 0.324725 | 0.914282 | 0.0777735 | 0.0155787 | 1.75871 | 0.106412 | 0.49967 |
49 | 0.133116 | 8.01902 | 0.529131 | 0.920349 | 0.066509 | 0.0219015 | 0.461582 | 0.0916982 | 0.344573 |
50 | 0.146114 | 8.17198 | 0.690028 | 0.819135 | 0.0890088 | 0.017714 | 0.52526 | 0.0817504 | 0.361424 |
This is very useful for histogram plotting of parameter distributions.
3.2.3 Sampling Importance Re-sampling
Pumas has support for inference through Sampling Importance Re-sampling through the SIR()
input to infer
. The signature for SIR in infer
looks as follows.
infer(fpm::FittedPumasModel, sir::SIR; level = 0.95, ensemblealg = EnsembleThreads())
This performs sampling importance re-sampling for the population in fpm
. The confidence intervals are calculated as the (1-level)/2
and (1+level)/2
quantiles of the sampled parameters. ensemblealg
can be EnsembleThreads() (the default value) to use multi-threading or EnsembleSerial()
to use a single thread.
The signature for the SIR
specification is
SIR(; rng, samples, resamples)
SIR
accepts a random number generator rng
, the number of samples from the proposal, samples
, can be set and to complete the specification the resample
has to be set. It is suggested that samples
is at least 5 times larger than resamples
in practice to have sufficient samples to resample from.
= infer(foce_fit, SIR(samples = 1000, resamples = 200); level = 0.95) sir_results
[ Info: Calculating: variance-covariance matrix. [ Info: Done. [ Info: Running SIR. [ Info: Resampling.
Simulated inference results
Dynamical system type: Closed form
Number of subjects: 32
Observation records: Active Missing
conc: 251 47
Total: 251 47
Number of parameters: Constant Optimized
0 9
Likelihood approximation: FOCE
Likelihood optimizer: BFGS
Termination Reason: GradientNorm
Log-likelihood value: -350.49625
---------------------------------------------------------
Estimate SE 95.0% C.I.
---------------------------------------------------------
pop_CL 0.13465 0.0057638 [ 0.12573 ; 0.14803 ]
pop_Vc 8.0535 0.2073 [ 7.6619 ; 8.4511 ]
pop_tabs 0.55061 0.15247 [ 0.25193 ; 0.84939 ]
pop_lag 0.87158 0.039711 [ 0.77815 ; 0.93949 ]
pk_Ω₁,₁ 0.070642 0.016792 [ 0.045127 ; 0.11117 ]
pk_Ω₂,₂ 0.018302 0.0051341 [ 0.0099781; 0.029576]
pk_Ω₃,₃ 0.91326 0.29186 [ 0.51588 ; 1.5607 ]
σ_prop 0.090096 0.0076219 [ 0.077837 ; 0.10757 ]
σ_add 0.39115 0.03583 [ 0.34596 ; 0.4794 ]
---------------------------------------------------------
Notice, that SIR
bases its first samples
number of samples from a truncated multivariate normal distribution with mean of the maximum likelihood population level parameters and covariance matrix that is the asymptotic matrix calculated by infer(fpm)
. This means that to use SIR
the matrix is question has to be successfully calculated by infer(fpm)
under the hood.
The methods for vcov
and DataFrame(sir_results.vcov)
that we saw for Bootstrap
also applies here
vcov(sir_results)
9×9 Symmetric{Float64, Matrix{Float64}}:
3.32215e-5 0.00035675 -0.00014213 … 1.54466e-6 4.61375e-5
0.00035675 0.0429741 0.00500241 8.41146e-5 -0.00114543
-0.00014213 0.00500241 0.0232472 -3.20658e-5 0.00120362
2.06855e-5 -3.20011e-5 -0.00289462 2.733e-6 1.90243e-5
5.3617e-5 0.000241812 0.000217077 -4.56506e-5 0.000260069
1.78638e-7 0.000293942 2.39619e-5 … -1.96089e-6 3.26251e-6
9.9374e-5 -0.000599248 -0.0170095 0.000528837 0.00345498
1.54466e-6 8.41146e-5 -3.20658e-5 5.8093e-5 -9.31452e-6
4.61375e-5 -0.00114543 0.00120362 -9.31452e-6 0.00128377
and
DataFrame(sir_results.vcov)
Row | pop_CL | pop_Vc | pop_tabs | pop_lag | pk_Ω₁,₁ | pk_Ω₂,₂ | pk_Ω₃,₃ | σ_prop | σ_add |
---|---|---|---|---|---|---|---|---|---|
Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | |
1 | 0.140508 | 8.20068 | 0.409156 | 0.845905 | 0.0608777 | 0.0209108 | 1.06931 | 0.109655 | 0.386555 |
2 | 0.137945 | 7.82772 | 0.344418 | 0.886041 | 0.094169 | 0.020994 | 0.861486 | 0.0863098 | 0.339881 |
3 | 0.13494 | 8.02326 | 0.747288 | 0.846647 | 0.0649128 | 0.0172251 | 0.716548 | 0.100662 | 0.364372 |
4 | 0.141068 | 7.85067 | 0.78469 | 0.81168 | 0.0968588 | 0.027783 | 0.479766 | 0.0851472 | 0.393093 |
5 | 0.1393 | 7.79483 | 0.354509 | 0.836893 | 0.101666 | 0.0225861 | 1.33078 | 0.0897428 | 0.417486 |
6 | 0.134664 | 7.99295 | 0.277951 | 0.868544 | 0.0594312 | 0.018651 | 1.7399 | 0.104571 | 0.437451 |
7 | 0.134258 | 8.22943 | 0.665332 | 0.91468 | 0.0775037 | 0.0230833 | 1.37048 | 0.0931842 | 0.413196 |
8 | 0.133964 | 8.26702 | 0.492129 | 0.870172 | 0.0837631 | 0.0159115 | 1.22462 | 0.088322 | 0.381315 |
9 | 0.147951 | 8.21433 | 0.658627 | 0.866207 | 0.0962308 | 0.0151633 | 0.553559 | 0.0842621 | 0.385726 |
10 | 0.137347 | 8.19341 | 0.651507 | 0.904939 | 0.0730112 | 0.022827 | 1.4006 | 0.0897206 | 0.416005 |
11 | 0.143722 | 8.42359 | 0.512354 | 0.921094 | 0.0900185 | 0.0318578 | 1.38446 | 0.0957107 | 0.409034 |
12 | 0.133738 | 8.06674 | 0.477571 | 0.850372 | 0.110013 | 0.0144534 | 0.897113 | 0.0746473 | 0.445651 |
13 | 0.143014 | 7.97018 | 0.55312 | 0.886349 | 0.0794491 | 0.0268673 | 1.08398 | 0.0956146 | 0.404677 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
189 | 0.126585 | 8.08207 | 0.62054 | 0.78139 | 0.0758827 | 0.0144785 | 0.766255 | 0.0802123 | 0.413584 |
190 | 0.140629 | 8.01159 | 0.643504 | 0.776443 | 0.0844378 | 0.0100397 | 1.07266 | 0.0974287 | 0.448844 |
191 | 0.134441 | 7.97372 | 0.640053 | 0.902385 | 0.0658095 | 0.020857 | 0.90929 | 0.0991377 | 0.382156 |
192 | 0.138334 | 8.05436 | 0.589931 | 0.810537 | 0.0929078 | 0.010947 | 1.15099 | 0.0852702 | 0.445203 |
193 | 0.130104 | 8.30811 | 0.52506 | 0.812338 | 0.0335241 | 0.0330931 | 1.12353 | 0.0983875 | 0.327373 |
194 | 0.129767 | 8.23543 | 0.737301 | 0.883207 | 0.0688149 | 0.00616843 | 1.1011 | 0.103411 | 0.465953 |
195 | 0.138709 | 8.18901 | 0.615274 | 0.892393 | 0.0950863 | 0.0234772 | 1.04428 | 0.092368 | 0.457352 |
196 | 0.134358 | 8.05776 | 0.49792 | 0.956675 | 0.0546478 | 0.0223467 | 2.00295 | 0.0975638 | 0.474696 |
197 | 0.133336 | 8.27967 | 0.634338 | 0.892742 | 0.057272 | 0.0232192 | 0.883752 | 0.0926312 | 0.348719 |
198 | 0.135551 | 8.05469 | 0.317257 | 0.938722 | 0.0601095 | 0.0283266 | 1.28788 | 0.0980568 | 0.403095 |
199 | 0.147227 | 8.06584 | 0.557798 | 0.848538 | 0.0692308 | 0.0188421 | 1.24191 | 0.112855 | 0.479208 |
200 | 0.140353 | 8.49541 | 0.461573 | 0.914758 | 0.0813025 | 0.02484 | 1.30072 | 0.0860687 | 0.412141 |
3.2.4 Marginal MCMC
An alternative to Bootstrap
and SIR
is to simply use the MarginalMCMC
sampler which is a Hamiltonian Monte Carlo (HMC) No-U-Turn Sampler (NUTS) that will sample from the marginal loglikelihood. This means that individual effects are marginalized out and then we sample the population level parameters. This does not resample populations like Bootstrap
so inference may be more stable if many resampled populations lead to extreme estimates and it differs from SIR
in that it does not need the asymptotic covariance matrix to be calculated and sampled from.
This method requires slightly more understanding from the user when setting the options that can be found through the docstring of MarginalMCMC
. Some knowledge of Bayesian inference is advised.
= infer(foce_fit, MarginalMCMC(); level = 0.95) inference_results
As sampling based inference can be computationally intensive we exclude the actual invocation of this method from this tutorial.
4 Concluding Remarks
This tutorial showcased a typical Pumas workflow for parameter inference in Pumas models. We showed the different methods supported by Pumas for calculating parameter uncertainty.