PK16 - Two-compartment intravenous plasma/urine

1 Background

  • Structural Model - Two Compartment model with first order elimination
  • Route of Administration - Intravenous infusion (Multiple-dose)
  • Dosage Regimen - 538 µmol/kg followed by 3390 µmol/kg
  • Number of Subjects - 1

PK16 Model Graph

2 Learning Outcome

This exercise explains a simultaneous analysis of plasma and urine data using a two-compartment model, with an additional urinary compartment accounting for the amount of drug excreted in urine.

3 Objectives

In this exercise, you will learn how to build a two compartment model and to simulate the data for a single subject based on the given dosage regimen.

4 Libraries

Call the necessary libraries to get started

using Random
using Pumas
using PumasUtilities
using AlgebraOfGraphics
using CairoMakie
using CSV
using DataFramesMeta
using Dates

5 Model

A two-compartment model with one Central and one Peripheral compartment will help in understanding the plasma concentration. A separate Urine compartment accounts for the fraction (amount) of drug excreted in urine.

pk_16 = @model begin
    @metadata begin
        desc = "Two Compartment Model with Urine Compartment"
        timeu = u"hr"
    end

    @param begin
        """
        Renal Clearance (L/hr/kg)
        """
        tvclr  RealDomain(lower = 0)
        """
        Non-renal Clearance (L/hr/kg)
        """
        tvclm  RealDomain(lower = 0)
        """
        Volume of Central Compartment (L/kg)
        """
        tvvc  RealDomain(lower = 0)
        """
        Volume of Peripheral Compartment (L/kg)
        """
        tvvp  RealDomain(lower = 0)
        """
        Inter-compartmental Clearance (L/hr/kg)
        """
        tvq  RealDomain(lower = 0)
        Ω  PDiagDomain(5)
        """
        Proportional RUV - Plasma
        """
        σ₁_prop  RealDomain(lower = 0)
        """
        Proportional RUV - Urine
        """
        σ₂_prop  RealDomain(lower = 0)
    end

    @random begin
        η ~ MvNormal(Ω)
    end

    @pre begin
        CLr = tvclr * exp(η[1])
        CLm = tvclm * exp(η[2])
        Vc = tvvc * exp(η[3])
        Vp = tvvp * exp(η[4])
        Q = tvq * exp(η[5])
        CL = CLr + CLm
        Vss = Vc + Vp
        t12 = 0.693 * Vss / CL
    end

    @dynamics begin
        Central' =
            -(CLr / Vc) * Central - (CLm / Vc) * Central + (Q / Vp) * Peripheral -
            (Q / Vc) * Central
        Peripheral' = (Q / Vc) * Central - (Q / Vp) * Peripheral
        Urine' = (CLr / Vc) * Central
    end

    @derived begin
        cp_plasma = @. Central / (Vc + eps())
        """
        Observed Plasma Concentration (μM)
        """
        dv_plasma ~ @. Normal(cp_plasma, abs(cp_plasma) * σ₁_prop)
        cp_urine = @. Urine
        """
        Observed Urine Amount (μmol)
        """
        dv_urine ~ @. Normal(cp_urine, abs(cp_urine) * σ₂_prop)
    end
end
PumasModel
  Parameters: tvclr, tvclm, tvvc, tvvp, tvq, Ω, σ₁_prop, σ₂_prop
  Random effects: η
  Covariates: 
  Dynamical system variables: Central, Peripheral, Urine
  Dynamical system type: Matrix exponential
  Derived: cp_plasma, dv_plasma, cp_urine, dv_urine
  Observed: cp_plasma, dv_plasma, cp_urine, dv_urine

6 Parameters

  • CLr - Renal Clearance (L/hr/kg)
  • CLm - Non-renal Clearance (L/hr/kg)
  • Vc - Volume of Central Compartment (L/kg)
  • Vp - Volume of Peripheral Compartment (L/kg)
  • Q - Inter-compartmental Clearance (L/hr/kg)
  • Ω - Between Subject Variability
  • σ²₁ - Residual error 1 (for plasma conc)
  • σ²₂ - Residual error 2 (for amount excreted in urine)

Derived Parameters:

  • CL - Total Clearance (L/hr/kg)
  • Vss - Volume of distribution at steady state (L/kg)
  • t1/2 - Half life (hr)

Typical value (tv) estimates for individual parameters

param = (
    tvclm = 0.05,
    tvclr = 0.31,
    tvvc = 1.6,
    tvvp = 0.16,
    tvq = 0.03,
    Ω = Diagonal([0.04, 0.04, 0.04, 0.04, 0.04]),
    σ₁_prop = 0.1,
    σ₂_prop = 0.1,
)

7 Dosage Regimen

  • The subject (male dog) received two consecutive intravenous infusions of a drug.
  • The subject received an initial dose of 538 µmol/kg from time 0 to 0.983 hr (rate = 547.304) followed by 3390 µmol/kg dose from time 0.983 to 23.95 hr (rate = 147.603).
  • Total infused dose: 3928 µmol/kg.
ev1 = DosageRegimen([538, 3390], time = [0, 0.983], cmt = [1, 1], rate = [547.304, 147.603])
2×10 DataFrame
Row time cmt amt evid ii addl rate duration ss route
Float64 Int64 Float64 Int8 Float64 Int64 Float64 Float64 Int8 NCA.Route
1 0.0 1 538.0 1 0.0 0 547.304 0.983 0 NullRoute
2 0.983 1 3390.0 1 0.0 0 147.603 22.967 0 NullRoute
sub1 = Subject(id = 1, events = ev1, observations = (cp = nothing,))
Subject
  ID: 1
  Events: 4
  Observations: cp: (n=0)

8 Simulation

To simulate the following for the above subject with specific observation time points.

  1. Plasma concentration.
  2. Amount excreted unchanged in urine.
Random.seed!(123)

The random effects are zero’ed out since we are simulating means

zfx = zero_randeffs(pk_16, sub1, param)
(η = [0.0, 0.0, 0.0, 0.0, 0.0],)
sim_sub1 = simobs(
    pk_16,
    sub1,
    param,
    zfx,
    obstimes = [
        0.5,
        1,
        2,
        4,
        6.1,
        7.6,
        8.02,
        12.05,
        12.15,
        15.95,
        22.13,
        23.89,
        24.05,
        24.46,
        24.94,
        25.94,
        26.96,
        27.95,
        29.97,
        31.94,
        35.96,
        36.2,
        48,
        48.2,
        54,
        60,
        60.2,
        72,
        72.2,
    ],
)
SimulatedObservations
  Simulated variables: cp_plasma, dv_plasma, cp_urine, dv_urine
  Time: [0.5, 1.0, 2.0, 4.0, 6.1, 7.6, 8.02, 12.05, 12.15, 15.95  …  31.94, 35.96, 36.2, 48.0, 48.2, 54.0, 60.0, 60.2, 72.0, 72.2]

9 Visualization

Create a DataFrame of the simulated data.

df1 = DataFrame(sim_sub1)
first(df1, 5)
5×30 DataFrame
Row id time cp_plasma dv_plasma cp_urine dv_urine evid amt cmt rate duration ss ii route η_1 η_2 η_3 η_4 η_5 Central Peripheral Urine CLr CLm Vc Vp Q CL Vss t12
String? Float64 Float64? Float64? Float64? Float64? Int64? Float64? Symbol? Float64? Float64? Int8? Float64? NCA.Route? Float64? Float64? Float64? Float64? Float64? Float64? Float64? Float64? Float64? Float64? Float64? Float64? Float64? Float64? Float64? Float64?
1 1 0.0 missing missing missing missing 1 538.0 Central 547.304 0.983 0 0.0 NullRoute 0.0 0.0 0.0 0.0 0.0 missing missing missing 0.31 0.05 1.6 0.16 0.03 0.36 1.76 3.388
2 1 0.5 161.044 166.797 12.7335 11.7625 0 missing missing missing missing missing missing missing 0.0 0.0 0.0 0.0 0.0 257.67 1.19427 12.7335 0.31 0.05 1.6 0.16 0.03 0.36 1.76 3.388
3 1 0.983 missing missing missing missing 1 3390.0 Central 147.603 22.967 0 0.0 NullRoute 0.0 0.0 0.0 0.0 0.0 missing missing missing 0.31 0.05 1.6 0.16 0.03 0.36 1.76 3.388
4 1 1.0 299.498 322.168 48.9648 39.3479 0 missing missing missing missing missing missing missing 0.0 0.0 0.0 0.0 0.0 479.197 4.45023 48.9648 0.31 0.05 1.6 0.16 0.03 0.36 1.76 3.388
5 1 2.0 317.468 271.27 144.684 135.949 0 missing missing missing missing missing missing missing 0.0 0.0 0.0 0.0 0.0 507.948 12.1436 144.684 0.31 0.05 1.6 0.16 0.03 0.36 1.76 3.388
time_plasma = [
    0.5,
    1,
    2,
    4,
    7.6,
    8.02,
    12.05,
    15.95,
    22.13,
    23.89,
    24.46,
    24.94,
    25.94,
    26.96,
    27.95,
    29.97,
    31.94,
    35.96,
    48,
    54,
    60,
    72,
]

df_plasma = @rsubset df1 :time in time_plasma
time_urine = [6.1, 12.15, 24.05, 36.2, 48.2, 60.2, 72.2]
df_urine = @rsubset df1 :time in time_urine

Plot the simulated plasma concentration data and the amount of drug excreted in urine in a single plot.

plasma_plt = @chain df_plasma begin
    @rtransform :Matrix = "Plasma"
    data(_) *
    mapping(
        :time => "Time (hours)",
        :cp_plasma => "Concentration (μM) & Amount (μmol)",
        color = :Matrix,
    ) *
    visual(ScatterLines, color = :blue, linewidth = 4)
end

urine_plt = @chain df_urine begin
    @rtransform :Matrix = "Urine"
    data(_) *
    mapping(
        :time => "Time (hours)",
        :cp_urine => "Concentration (μM) & Amount (μmol)",
        color = :Matrix,
    ) *
    visual(ScatterLines, color = :black, linewidth = 4)
end

draw(
    plasma_plt + urine_plt;
    axis = (;
        xticks = [0, 10, 20, 30, 40, 50, 60, 70, 80],
        yticks = [0.1, 0, 1, 10, 100, 1000, 10000],
        yscale = log,
        ytickformat = x -> string.(round.(x; digits = 1)),
        ygridwidth = 3,
        yminorticksvisible = true,
        yminorgridvisible = true,
        yminorticks = IntervalsBetween(10),
        xminorticksvisible = true,
        xminorgridvisible = true,
        xminorticks = IntervalsBetween(5),
    ),
    figure = (; fontsize = 22,),
)

10 Population simulation

par = (
    tvclm = 0.05,
    tvclr = 0.31,
    tvvc = 1.6,
    tvvp = 0.16,
    tvq = 0.03,
    Ω = Diagonal([0.0081, 0.004, 0.0004, 0.0256, 0.0676]),
    σ₁_prop = 0.04,
    σ₂_prop = 0.09,
)

ev1 = DosageRegimen([538, 3390], time = [0, 0.983], cmt = [1, 1], rate = [547.304, 147.603])
pop = map(i -> Subject(id = i, events = ev1), 1:80)

Random.seed!(1234)
pop_sim = simobs(
    pk_16,
    pop,
    par,
    obstimes = [
        0.5,
        1,
        2,
        4,
        6.1,
        7.6,
        8.02,
        12.05,
        15.95,
        22.13,
        23.89,
        24.46,
        24.94,
        25.94,
        26.96,
        27.95,
        29.97,
        31.94,
        36,
        48,
        54,
        60,
        72,
    ],
)

df_sim = DataFrame(pop_sim)
#CSV.write("pk_16.csv", df_sim)