using Pumas
using PharmaDatasets
using DataFramesMeta
using PumasUtilities
using CSV
Case Study III: Development of a population PKPD model
1 Introduction
This is the third tutorial in a series of case studies based on the tutorials found here . The third case study is about building a sequential PKPD model. It has IV infusion dosing, PK is governed by a simple one compartment model, and PD is an indirect response model (IDR) of histamine concentrations.
2 Data
The datasets are available from the PharmaDatasets
package. One for the PK model (CS3_IVINFEST
) and another for the PD model (CS3_IVINFPDEST
). First, we read the data for the PK model. We define an :evid
and a :cmt
column and set all event row values of :CONC
to missing
.
= CSV.read(dataset("pumas/event_data/CS3_IVINFEST", String), DataFrame; header = 4)
pkdata @rtransform!(pkdata, :evid = :AMT == 0 ? 0 : 1)
@rtransform!(pkdata, :cmt = :AMT == 0 ? missing : Symbol("Central"))
@rtransform!(pkdata, :CONC = :evid == 1 ? missing : :CONC)
Then, we map the DataFrame
to a population. We can omit specifying the cmt
and evid
keyword because we used the default value of lower case :cmt
and :evid
.
= read_pumas(
pk_population
pkdata;= :CID,
id = :TIME,
time = [:CONC],
observations = :AMT,
amt = :RATE,
rate )
Population
Subjects: 20
Observations: CONC
The data can be plotted using the observations_vs_time
plot.
observations_vs_time(pk_population; axis = (title = "PK data plot",))
To emphasize individual trajectories, the sim_plot
function also works on a population.
sim_plot(pk_population; axis = (title = "PK data plot",))
3 PK Model definition
The next step is to define the PK model. Since we have IV infusion we do not need a depot. The model does not contain any significant distribution phase. With just a Central
compartment, we can use the Central1
predefined model and its associated closed form solution. This is equivalent to ADVAN1
in NONMEM.
= @model begin
inf1cmt @param begin
∈ RealDomain(lower = 0.0)
θcl ∈ RealDomain(lower = 0.0)
θvc ∈ PDiagDomain(2)
Ω ∈ RealDomain(lower = 0.0)
σ_add ∈ RealDomain(lower = 0.0)
σ_prop end
@random begin
~ MvNormal(Ω)
η end
@pre begin
= θcl * exp(η[1])
CL = θvc * exp(η[2])
Vc end
@dynamics Central1
@derived begin
:= @. Central / Vc
conc_model ~ @. Normal(conc_model, sqrt(σ_add^2 + (conc_model * σ_prop)^2))
CONC end
end
PumasModel
Parameters: θcl, θvc, Ω, σ_add, σ_prop
Random effects: η
Covariates:
Dynamical system variables: Central
Dynamical system type: Closed form
Derived: CONC
Observed: CONC
To be able to fit the model we need to specify initial parameters.
= (
initial_est_inf1cmt = 1.0,
θcl = 1.0,
θvc = Diagonal([0.09, 0.09]),
Ω = sqrt(10.0),
σ_add = sqrt(0.01),
σ_prop )
(θcl = 1.0,
θvc = 1.0,
Ω = [0.09 0.0; 0.0 0.09],
σ_add = 3.1622776601683795,
σ_prop = 0.1,)
And then we can fit the model to data.
= fit(inf1cmt, pk_population, initial_est_inf1cmt, FOCE()) inf1cmt_results
[ Info: Checking the initial parameter values.
[ Info: The initial negative log likelihood and its gradient are finite. Check passed.
Iter Function value Gradient norm
0 3.174194e+03 1.463122e+03
* time: 0.025079965591430664
1 1.700194e+03 3.899473e+02
* time: 1.1490519046783447
2 1.372117e+03 2.133637e+02
* time: 1.1643850803375244
3 1.149219e+03 9.540101e+01
* time: 1.1815590858459473
4 1.063179e+03 5.172865e+01
* time: 1.198380947113037
5 1.025366e+03 2.646221e+01
* time: 1.2131149768829346
6 1.011715e+03 1.666561e+01
* time: 1.2268919944763184
7 1.007591e+03 1.182557e+01
* time: 1.2399559020996094
8 1.006663e+03 9.681515e+00
* time: 1.25217604637146
9 1.006394e+03 8.838980e+00
* time: 1.2677500247955322
10 1.006061e+03 8.916639e+00
* time: 1.2788939476013184
11 1.005287e+03 8.898501e+00
* time: 1.3481359481811523
12 1.003673e+03 1.594601e+01
* time: 1.359126091003418
13 1.000433e+03 3.264510e+01
* time: 1.3702471256256104
14 9.939620e+02 5.680776e+01
* time: 1.3817780017852783
15 9.920492e+02 8.189008e+01
* time: 1.3940470218658447
16 9.853470e+02 4.792287e+01
* time: 1.4065520763397217
17 9.821580e+02 4.099167e+01
* time: 1.4164319038391113
18 9.784445e+02 4.359738e+01
* time: 1.4280519485473633
19 9.753844e+02 1.715016e+01
* time: 1.439202070236206
20 9.742523e+02 1.244736e+01
* time: 1.4482779502868652
21 9.734762e+02 1.086879e+01
* time: 1.4576051235198975
22 9.729031e+02 1.529972e+01
* time: 1.4666869640350342
23 9.714972e+02 2.051054e+01
* time: 1.4766271114349365
24 9.702763e+02 1.703802e+01
* time: 1.4864990711212158
25 9.693945e+02 1.242588e+01
* time: 1.4969069957733154
26 9.690627e+02 1.193813e+01
* time: 1.5078580379486084
27 9.687959e+02 1.049254e+01
* time: 1.5192770957946777
28 9.683343e+02 7.801000e+00
* time: 1.5297629833221436
29 9.667001e+02 1.096197e+01
* time: 1.5398108959197998
30 9.660129e+02 9.792112e+00
* time: 1.5491321086883545
31 9.655534e+02 9.823330e+00
* time: 1.5586440563201904
32 9.651971e+02 1.059550e+01
* time: 1.5686509609222412
33 9.636185e+02 1.011640e+01
* time: 1.6011080741882324
34 9.621257e+02 7.727968e+00
* time: 1.610482931137085
35 9.603739e+02 9.857407e+00
* time: 1.6202690601348877
36 9.603277e+02 1.508837e+01
* time: 1.6302390098571777
37 9.598745e+02 3.570285e-01
* time: 1.6402621269226074
38 9.598694e+02 2.341098e-01
* time: 1.649137020111084
39 9.598690e+02 9.077958e-02
* time: 1.6573240756988525
40 9.598690e+02 3.615731e-02
* time: 1.6650490760803223
41 9.598690e+02 3.631911e-03
* time: 1.673048973083496
42 9.598690e+02 3.934849e-04
* time: 1.680021047592163
FittedPumasModel
Successful minimization: true
Likelihood approximation: FOCE
Likelihood Optimizer: BFGS
Dynamical system type: Closed form
Log-likelihood value: -959.86896
Number of subjects: 20
Number of parameters: Fixed Optimized
0 6
Observation records: Active Missing
CONC: 220 0
Total: 220 0
---------------------
Estimate
---------------------
θcl 0.024451
θvc 0.074289
Ω₁,₁ 0.072037
Ω₂,₂ 0.09384
σ_add 3.2726
σ_prop 0.10228
---------------------
4 Model diagnostics
As usual, we use the inspect
function to calculate all diagnostics.
= inspect(inf1cmt_results) inf1cmt_insp
[ Info: Calculating predictions.
[ Info: Calculating weighted residuals.
[ Info: Calculating empirical bayes.
[ Info: Evaluating individual parameters.
[ Info: Evaluating dose control parameters.
[ Info: Done.
FittedPumasModelInspection
Fitting was successful: true
Likehood approximation used for weighted residuals : Pumas.FOCE{Optim.NewtonTrustRegion{Float64}, Optim.Options{Float64, Nothing}}(Optim.NewtonTrustRegion{Float64}(1.0, 100.0, 1.4901161193847656e-8, 0.1, 0.25, 0.75, false), Optim.Options(x_abstol = 0.0, x_reltol = 0.0, f_abstol = 0.0, f_reltol = 0.0, g_abstol = 1.0e-5, g_reltol = 1.0e-8, outer_x_abstol = 0.0, outer_x_reltol = 0.0, outer_f_abstol = 0.0, outer_f_reltol = 0.0, outer_g_abstol = 1.0e-8, outer_g_reltol = 1.0e-8, f_calls_limit = 0, g_calls_limit = 0, h_calls_limit = 0, allow_f_increases = false, allow_outer_f_increases = true, successive_f_tol = 1, iterations = 1000, outer_iterations = 1000, store_trace = false, trace_simplex = false, show_trace = false, extended_trace = false, show_warnings = true, show_every = 1, time_limit = NaN, )
)
These can be saved to a file by constructing a table representation of everything from predictions to weighted residuals and empirical bayes estimes and individual coefficients (POSTHOC in NONMEM).
= DataFrame(inf1cmt_insp)
df_inspect write("inspect_file.csv", df_inspect) CSV.
"inspect_file.csv"
Besides mean predictions, it is also simple to simulate from the estimated model using the empirical bayes estimates as the values for the random effects.
sim_plot(simobs(inf1cmt, pk_population, coef(inf1cmt_results)))
For the PD model we need individual CL
and Vc
values.
= unique(df_inspect[!, [:id, :time, :CL, :Vc]], :id)
icoef_dataframe rename!(icoef_dataframe, :CL => :CLi, :Vc => :Vci)
Row | id | time | CLi | Vci |
---|---|---|---|---|
String | Float64 | Float64? | Float64? | |
1 | 1 | 0.0 | 0.0154794 | 0.0879781 |
2 | 10 | 0.0 | 0.0308652 | 0.0566826 |
3 | 11 | 0.0 | 0.028236 | 0.0814447 |
4 | 12 | 0.0 | 0.0397456 | 0.0597957 |
5 | 13 | 0.0 | 0.021964 | 0.0764398 |
6 | 14 | 0.0 | 0.0233953 | 0.115324 |
7 | 15 | 0.0 | 0.0270355 | 0.0653006 |
8 | 16 | 0.0 | 0.0253244 | 0.0579478 |
9 | 17 | 0.0 | 0.0278282 | 0.144549 |
10 | 18 | 0.0 | 0.0400327 | 0.0813417 |
11 | 19 | 0.0 | 0.0183681 | 0.0723819 |
12 | 2 | 0.0 | 0.0191042 | 0.0920158 |
13 | 20 | 0.0 | 0.0276561 | 0.0533032 |
14 | 3 | 0.0 | 0.0156637 | 0.0753704 |
15 | 4 | 0.0 | 0.0260312 | 0.0691899 |
16 | 5 | 0.0 | 0.0284244 | 0.103891 |
17 | 6 | 0.0 | 0.0245165 | 0.094743 |
18 | 7 | 0.0 | 0.0153045 | 0.0360822 |
19 | 8 | 0.0 | 0.0261443 | 0.0750091 |
20 | 9 | 0.0 | 0.0248482 | 0.0555691 |
5 Getting the data
The data file consists of data obtained from 10 individuals who were treated with 500mg dose TID (three times a day, every eight hours) for five days. The dataset exists in the PharmaDatasets
package and we load it into memory as a DataFrame
. We specify that the first column should be a String
because we want to join the individual parameters from the PK step to the PD data, and the id
column of the DataFrame
from inspect
is a String
column. We use the first(input, number_of_elements)
function to show the first 10 rows of the DataFrame
.
= CSV.read(
pddata dataset("pumas/event_data/CS3_IVINFPDEST", String),
DataFrame;= 5,
header = Dict(1 => String),
types
)rename!(pddata, :CID => :id, :TIME => :time, :AMT => :amt, :CMT => :cmt)
@rtransform!(pddata, :evid = :amt == 0 ? 0 : 1)
@rtransform!(pddata, :HIST = :evid == 1 ? missing : :HIST)
first(pddata, 10)
Row | id | time | HIST | amt | cmt | RATE | MDV | CLI | VI | evid |
---|---|---|---|---|---|---|---|---|---|---|
String | Float64 | Float64? | Int64 | Int64 | Float64 | Int64 | Float64 | Float64 | Int64 | |
1 | 1 | 0.0 | missing | 100 | 1 | 16.7 | 1 | 15.585 | 90.812 | 1 |
2 | 1 | 0.0 | missing | 1 | 2 | 0.0 | 1 | 15.585 | 90.812 | 1 |
3 | 1 | 0.0 | 13.008 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 |
4 | 1 | 0.5 | 13.808 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 |
5 | 1 | 1.0 | 8.6859 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 |
6 | 1 | 3.0 | 6.2601 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 |
7 | 1 | 5.0 | 4.0602 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 |
8 | 1 | 6.0 | 4.4985 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 |
9 | 1 | 8.0 | 3.2736 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 |
10 | 1 | 12.0 | 2.6026 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 |
The file contains 11 columns:
= outerjoin(pddata, icoef_dataframe; on = [:id, :time])
pd_dataframe sort!(pd_dataframe, [:id, :time])
Row | id | time | HIST | amt | cmt | RATE | MDV | CLI | VI | evid | CLi | Vci |
---|---|---|---|---|---|---|---|---|---|---|---|---|
String | Float64 | Float64? | Int64? | Int64? | Float64? | Int64? | Float64? | Float64? | Int64? | Float64? | Float64? | |
1 | 1 | 0.0 | missing | 100 | 1 | 16.7 | 1 | 15.585 | 90.812 | 1 | 0.0154794 | 0.0879781 |
2 | 1 | 0.0 | missing | 1 | 2 | 0.0 | 1 | 15.585 | 90.812 | 1 | 0.0154794 | 0.0879781 |
3 | 1 | 0.0 | 13.008 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 | 0.0154794 | 0.0879781 |
4 | 1 | 0.5 | 13.808 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 | missing | missing |
5 | 1 | 1.0 | 8.6859 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 | missing | missing |
6 | 1 | 3.0 | 6.2601 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 | missing | missing |
7 | 1 | 5.0 | 4.0602 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 | missing | missing |
8 | 1 | 6.0 | 4.4985 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 | missing | missing |
9 | 1 | 8.0 | 3.2736 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 | missing | missing |
10 | 1 | 12.0 | 2.6026 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 | missing | missing |
11 | 1 | 15.0 | 2.3422 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 | missing | missing |
12 | 1 | 18.0 | 3.8008 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 | missing | missing |
13 | 1 | 24.0 | 7.1397 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 | missing | missing |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
269 | 9 | 0.0 | 34.608 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | 0.0248482 | 0.0555691 |
270 | 9 | 0.5 | 29.57 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | missing | missing |
271 | 9 | 1.0 | 27.68 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | missing | missing |
272 | 9 | 3.0 | 18.397 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | missing | missing |
273 | 9 | 5.0 | 14.908 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | missing | missing |
274 | 9 | 6.0 | 11.669 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | missing | missing |
275 | 9 | 8.0 | 8.5475 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | missing | missing |
276 | 9 | 12.0 | 16.895 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | missing | missing |
277 | 9 | 15.0 | 21.326 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | missing | missing |
278 | 9 | 18.0 | 26.131 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | missing | missing |
279 | 9 | 24.0 | 26.278 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | missing | missing |
280 | 9 | 30.0 | 39.643 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | missing | missing |
6 Converting the DataFrame to a collection of Subjects
= read_pumas(pd_dataframe; observations = [:HIST], covariates = [:CLi, :Vci]) population
Population
Subjects: 20
Covariates: CLi, Vci
Observations: HIST
7 IDR model
= @model begin
irm1 @metadata begin
= "POPULATION PK-PD MODELING"
desc = u"hr" # hour
timeu end
@param begin
∈ RealDomain(lower = 0)
tvkin ∈ RealDomain(lower = 0)
tvkout ∈ RealDomain(lower = 0)
tvic50 ∈ RealDomain(lower = 0)
tvimax ∈ PDiagDomain(3)
Ω ∈ RealDomain(lower = 0)
σ_add_pd ∈ RealDomain(lower = 0)
σ_prop_pd end
@random begin
~ MvNormal(Ω)
η end
@covariates CLi Vci
@pre begin
= tvkin * exp(η[1])
kin = tvkout * exp(η[2])
kout = kin / kout
bsl = tvic50 * exp(η[3])
ic50 = tvimax
imax = CLi
CL = Vci
Vc end
@init begin
= bsl
Response end
@dynamics begin
' = -CL / Vc * Central
Central' =
Response* (1 - imax * (Central / Vc) / (ic50 + Central / Vc)) - kout * Response
kin end
@derived begin
~ @. Normal(Response, sqrt(σ_add_pd^2 + (Response * σ_prop_pd)^2))
HIST end
end
PumasModel
Parameters: tvkin, tvkout, tvic50, tvimax, Ω, σ_add_pd, σ_prop_pd
Random effects: η
Covariates: CLi, Vci
Dynamical system variables: Central, Response
Dynamical system type: Nonlinear ODE
Derived: HIST
Observed: HIST
= (
init_θ = 5.4,
tvkin = 0.3,
tvkout = 3.9,
tvic50 = 1.0,
tvimax = Diagonal([0.2, 0.2, 0.2]),
Ω = 0.05,
σ_add_pd = 0.05,
σ_prop_pd )
(tvkin = 5.4,
tvkout = 0.3,
tvic50 = 3.9,
tvimax = 1.0,
Ω = [0.2 0.0 0.0; 0.0 0.2 0.0; 0.0 0.0 0.2],
σ_add_pd = 0.05,
σ_prop_pd = 0.05,)
= fit(
irm1_results
irm1,
population,
init_θ,FOCE();
Pumas.= (tvimax = 1.0,),
constantcoef = (show_every = 10,),
optim_options )
[ Info: Checking the initial parameter values.
[ Info: The initial negative log likelihood and its gradient are finite. Check passed.
Iter Function value Gradient norm
0 1.625453e+03 2.073489e+03
* time: 0.000102996826171875
10 5.899604e+02 6.134653e+00
* time: 1.3890330791473389
20 5.824375e+02 2.641108e+01
* time: 2.5162220001220703
30 5.801204e+02 1.223991e+00
* time: 3.6931090354919434
40 5.798576e+02 5.986551e-01
* time: 4.763143062591553
50 5.668947e+02 6.290151e+00
* time: 5.963482141494751
60 5.591284e+02 5.109298e+00
* time: 7.093962907791138
70 5.559638e+02 3.233225e-04
* time: 8.205992937088013
FittedPumasModel
Successful minimization: true
Likelihood approximation: FOCE
Likelihood Optimizer: BFGS
Dynamical system type: Nonlinear ODE
Solver(s):(OrdinaryDiffEq.Vern7,OrdinaryDiffEq.Rodas5P)
Log-likelihood value: -555.96385
Number of subjects: 20
Number of parameters: Fixed Optimized
1 8
Observation records: Active Missing
HIST: 240 0
Total: 240 0
------------------------
Estimate
------------------------
tvkin 5.5533
tvkout 0.27864
tvic50 30.427
tvimax 1.0
Ω₁,₁ 0.18348
Ω₂,₂ 0.067395
Ω₃,₃ 0.20683
σ_add_pd 1.1094
σ_prop_pd 0.1038
------------------------
= inspect(irm1_results)
irm1_insp goodness_of_fit(irm1_insp)
[ Info: Calculating predictions.
[ Info: Calculating weighted residuals.
[ Info: Calculating empirical bayes.
[ Info: Evaluating individual parameters.
[ Info: Evaluating dose control parameters.
[ Info: Done.
8 Conclusion
In this tutorial, we saw how to build on topics we learnt in the previous two case studies to build a sequential PKPD model. We built two different models and saw how to forward the results from the PK model to the PD model. This concludes the third of the three case studies.