A Comprehensive Introduction to Pumas

Authors

Vijay Ivaturi

Jose Storopoli

This tutorial provides a comprehensive introduction to a modeling and simulation workflow in Pumas. The idea is not to get into the details of Pumas specifics, but instead provide a narrative on the lines of a regular workflow in our day-to-day work, with brevity where required to allow a broad overview. Wherever possible, cross-references will be provided to documentation and detailed examples that provide deeper insight into a particular topic.

As part of this workflow, you will be introduced to various aspects such as:

  1. Data wrangling in Julia
  2. Exploratory analysis in Julia
  3. Continuous data non-linear mixed effects modeling in Pumas
  4. Model comparison routines, post-processing, validation etc.

1 The Study and Design

CTMNopain is a novel anti-inflammatory agent under preliminary investigation. A dose-ranging trial was conducted comparing placebo with 3 doses of CTMNopain (5mg, 20mg and 80 mg QD). The maximum tolerated dose is 160 mg per day. Plasma concentrations (mg/L) of the drug were measured at 0, 0.5, 1, 1.5, 2, 2.5, 3-8 hours.

Pain score (0=no pain, 1=mild, 2=moderate, 3=severe) were obtained at time points when plasma concentration was collected. A pain score of 2 or more is considered as no pain relief.

The subjects can request for remedication if pain relief is not achieved after 2 hours post dose. Some subjects had remedication before 2 hours if they were not able to bear the pain. The time to remedication and the remedication status is available for subjects.

The pharmacokinetic dataset can be accessed using PharmaDatasets.jl.

2 Setup

2.1 Load libraries

These libraries provide the workhorse functionality in the Pumas ecosystem:

using Pumas
using PumasUtilities
using NCA
using NCAUtilities

In addition, libraries below are good add-on’s that provide ancillary functionality:

using GLM: lm, @formula
using Random
using CSV
using DataFramesMeta
using CairoMakie
using PharmaDatasets

2.2 Data Wrangling

We start by reading in the dataset and making some quick summaries.

Tip

If you want to learn more about data wrangling, don’t forget to check our Data Wrangling in Julia tutorials!

pkpain_df = dataset("pk_painrelief")
first(pkpain_df, 5)
5×7 DataFrame
Row Subject Time Conc PainRelief PainScore RemedStatus Dose
Int64 Float64 Float64 Int64 Int64 Int64 String7
1 1 0.0 0.0 0 3 1 20 mg
2 1 0.5 1.15578 1 1 0 20 mg
3 1 1.0 1.37211 1 0 0 20 mg
4 1 1.5 1.30058 1 0 0 20 mg
5 1 2.0 1.19195 1 1 0 20 mg

Let’s filter out the placebo data as we don’t need that for the PK analysis.

pkpain_noplb_df = @rsubset pkpain_df :Dose != "Placebo";
first(pkpain_noplb_df, 5)
5×7 DataFrame
Row Subject Time Conc PainRelief PainScore RemedStatus Dose
Int64 Float64 Float64 Int64 Int64 Int64 String7
1 1 0.0 0.0 0 3 1 20 mg
2 1 0.5 1.15578 1 1 0 20 mg
3 1 1.0 1.37211 1 0 0 20 mg
4 1 1.5 1.30058 1 0 0 20 mg
5 1 2.0 1.19195 1 1 0 20 mg

3 Analysis

3.1 Non-compartmental analysis

Let’s begin by performing a quick NCA of the concentration time profiles and view the exposure changes across doses. The input data specification for NCA analysis requires the presence of a :route column and an :amt column that specifies the dose. So, let’s add that in:

@rtransform! pkpain_noplb_df begin
    :route = "ev"
    :Dose = parse(Int, chop(:Dose; tail = 3))
end

We also need to create an :amt column:

@rtransform! pkpain_noplb_df :amt = :Time == 0 ? :Dose : missing

Now, we map the data variables to the read_nca function that prepares the data for NCA analysis.

pkpain_nca = read_nca(
    pkpain_noplb_df;
    id = :Subject,
    time = :Time,
    amt = :amt,
    observations = :Conc,
    group = [:Dose],
    route = :route,
)
NCAPopulation (120 subjects):
  Group: [["Dose" => 5], ["Dose" => 20], ["Dose" => 80]]
  Number of missing observations: 0
  Number of blq observations: 0

Now that we mapped the data in, let’s visualize the concentration vs time plots for a few individuals. When paginate is set to true, a vector of plots are returned and below we display the first element with 9 individuals.

f = observations_vs_time(
    pkpain_nca;
    paginate = true,
    axis = (; xlabel = "Time (hr)", ylabel = "CTMNoPain Concentration (ng/mL)"),
    facet = (; combinelabels = true),
)
f[1]

An observations versus time profile for all subjects

Observations versus Time

or you can view the summary curves by dose group as passed in to the group argument in read_nca

summary_observations_vs_time(
    pkpain_nca,
    figure = (; fontsize = 22, resolution = (800, 1000)),
    color = "black",
    linewidth = 3,
    axis = (; xlabel = "Time (hr)", ylabel = "CTMX Concentration (μg/mL)"),
    facet = (; combinelabels = true, linkaxes = true),
)

An observations versus time profile for all subjects in a summarized manner

Summary Observations versus Time

A full NCA Report is now obtained for completeness purposes using the run_nca function, but later we will only extract a couple of key metrics of interest.

pk_nca = run_nca(pkpain_nca; sigdigits = 3)

We can look at the NCA fits for some subjects. Here f is a vector or figures. We’ll showcase the first image by indexing f:

f = subject_fits(
    pk_nca,
    paginate = true,
    axis = (; xlabel = "Time (hr)", ylabel = "CTMX Concentration (μg/mL)"),
    facet = (; combinelabels = true, linkaxes = true),
)
f[1]

Trend plot with observations for all individual subjects over time

Subject Fits

As CTMNopain’s effect maybe mainly related to maximum concentration (cmax) or area under the curve (auc), we present some summary statistics using the summarize function from NCA.

strata = [:Dose]
1-element Vector{Symbol}:
 :Dose
params = [:cmax, :aucinf_obs]
2-element Vector{Symbol}:
 :cmax
 :aucinf_obs
output = summarize(pk_nca; stratify_by = strata, parameters = params)
6×10 DataFrame
Row Dose parameters numsamples minimum maximum mean std geomean geostd geomeanCV
Int64 String Int64 Float64 Float64 Float64 Float64 Float64 Float64 Float64
1 5 cmax 40 0.19 0.539 0.356075 0.0884129 0.345104 1.2932 26.1425
2 5 aucinf_obs 40 0.914 3.4 1.5979 0.490197 1.53373 1.32974 29.0868
3 20 cmax 40 0.933 2.7 1.4737 0.361871 1.43408 1.2633 23.6954
4 20 aucinf_obs 40 2.77 14.1 6.377 2.22239 6.02031 1.41363 35.6797
5 80 cmax 40 3.3 8.47 5.787 1.31957 5.64164 1.25757 23.2228
6 80 aucinf_obs 40 13.7 49.1 29.5 8.68984 28.2954 1.34152 30.0258

The statistics printed above are the default, but you can pass in your own statistics using the stats = [] argument to the summarize function.

We can look at a few parameter distribution plots.

parameters_vs_group(
    pk_nca,
    parameter = :cmax,
    axis = (; xlabel = "Dose (mg)", ylabel = "Cₘₐₓ (ng/mL)"),
    figure = (; fontsize = 18),
)

A violin plot for the Cmax distribution for each dose group

Cmax for each Dose Group

Dose normalized PK parameters, cmax and aucinf were essentially dose proportional between for 5 mg, 20 mg and 80 mg doses. You can perform a simple regression to check the impact of dose on cmax:

dp = NCA.DoseLinearityPowerModel(pk_nca, :cmax; level = 0.9)
Dose Linearity Power Model
Variable: cmax
Model: log(cmax) ~ log(α) + β × log(dose)
────────────────────────────────────
   Estimate  low CI 90%  high CI 90%
────────────────────────────────────
β   1.00775     0.97571       1.0398
────────────────────────────────────

Here’s a visualization for the dose linearity using a power model for cmax:

power_model(dp)

A dose linearity power model plot for Cmax

Dose Linearity Plot

We can also visualize a dose proportionality results with respect to a specific endpoint in a NCA Report; for example cmax and aucinf_obs:

dose_vs_dose_normalized(pk_nca, :cmax)

A dose proportionality plot for Cmax

Dose Proportionality Plot
dose_vs_dose_normalized(pk_nca, :aucinf_obs)

A dose proportionality plot for AUC

Dose Proportionality Plot

Based on visual inspection of the concentration time profiles as seen earlier, CTMNopain exhibited monophasic decline, and perhaps a one compartment model best fits the PK data.

3.2 Pharmacokinetic modeling

As seen from the plots above, the concentrations decline monoexponentially. We will evaluate both one and two compartment structural models to assess best fit. Further, different residual error models will also be tested.

We will use the results from NCA to provide us good initial estimates.

3.2.1 Data preparation for modeling

PumasNDF requires the presence of :evid and :cmt columns in the dataset.

@rtransform! pkpain_noplb_df begin
    :evid = :Time == 0 ? 1 : 0
    :cmt = :Time == 0 ? 1 : 2
    :cmt2 = 1 # for zero order absorption
end

Further, observations at time of dosing, i.e., when evid = 1 have to be missing

@rtransform! pkpain_noplb_df :Conc = :evid == 1 ? missing : :Conc

The dataframe will now be converted to a Population using read_pumas. Note that both observations and covariates are required to be an array even if it is one element.

pkpain_noplb = read_pumas(
    pkpain_noplb_df;
    id = :Subject,
    time = :Time,
    amt = :amt,
    observations = [:Conc],
    covariates = [:Dose],
    evid = :evid,
    cmt = :cmt,
)
Population
  Subjects: 120
  Covariates: Dose
  Observations: Conc

Now that the data is transformed to a Population of subjects, we can explore different models.

3.2.2 One-compartment model

Note

If you are not familiar yet with the @model blocks and syntax, please check our documentation.

pk_1cmp = @model begin

    @metadata begin
        desc = "One Compartment Model"
        timeu = u"hr"
    end

    @param begin
        """
        Clearance (L/hr)
        """
        tvcl  RealDomain(; lower = 0, init = 3.2)
        """
        Volume (L)
        """
        tvv  RealDomain(; lower = 0, init = 16.4)
        """
        Absorption rate constant (h-1)
        """
        tvka  RealDomain(; lower = 0, init = 3.8)
        """
          - ΩCL
          - ΩVc
          - ΩKa
        """
        Ω  PDiagDomain(init = [0.04, 0.04, 0.04])
        """
        Proportional RUV
        """
        σ_p  RealDomain(; lower = 0.0001, init = 0.2)
    end

    @random begin
        η ~ MvNormal(Ω)
    end

    @covariates begin
        """
        Dose (mg)
        """
        Dose
    end

    @pre begin
        CL = tvcl * exp(η[1])
        Vc = tvv * exp(η[2])
        Ka = tvka * exp(η[3])
    end

    @dynamics Depots1Central1

    @derived begin
        cp := @. Central / Vc
        """
        CTMx Concentration (ng/mL)
        """
        Conc ~ @. Normal(cp, abs(cp) * σ_p)
    end

end
PumasModel
  Parameters: tvcl, tvv, tvka, Ω, σ_p
  Random effects: η
  Covariates: Dose
  Dynamical variables: Depot, Central
  Derived: Conc
  Observed: Conc
Tip

Note that the local assignment := can be used to define intermediate statements that will not be carried outside of the block. This means that all the resulting data workflows from this model will not contain the intermediate variables defined with :=. We use this when we want to suppress the variable from any further output.

The idea behind := is for performance reasons. If you are not carrying the variable defined with := outside of the block, then it is not necessary to store it in the resulting data structures. Not only will your model run faster, but the resulting data structures will also be smaller.

Before going to fit the model, let’s evaluate some helpful steps via simulation to check appropriateness of data and model

# zero out the random effects
etas = zero_randeffs(pk_1cmp, init_params(pk_1cmp), pkpain_noplb)

Above, we are generating a vector of η’s of the same length as the number of subjects to zero out the random effects. We do this as we are evaluating the trajectories of the concentrations at the initial set of parameters at a population level. Other helper functions here are sample_randeffs and init_randeffs. Please refer to the documentation.

simpk_iparams = simobs(pk_1cmp, pkpain_noplb, init_params(pk_1cmp), etas)
Simulated population (Vector{<:Subject})
  Simulated subjects: 120
  Simulated variables: Conc
sim_plot(
    pk_1cmp,
    simpk_iparams;
    observations = [:Conc],
    figure = (; fontsize = 18),
    axis = (;
        xlabel = "Time (hr)",
        ylabel = "Observed/Predicted \n CTMx Concentration (ng/mL)",
    ),
)

A simulated observations versus time plot overlaid with the scatter plot of the observed observations

Simulated Observations Plot

Our NCA based initial guess on the parameters seem to work well.

Lets change the initial estimate of a couple of the parameters to evaluate the sensitivity.

pkparam = (; init_params(pk_1cmp)..., tvka = 2, tvv = 10)
(tvcl = 3.2,
 tvv = 10,
 tvka = 2,
 Ω = [0.04 0.0 0.0; 0.0 0.04 0.0; 0.0 0.0 0.04],
 σ_p = 0.2,)
simpk_changedpars = simobs(pk_1cmp, pkpain_noplb, pkparam, etas)
Simulated population (Vector{<:Subject})
  Simulated subjects: 120
  Simulated variables: Conc
sim_plot(
    pk_1cmp,
    simpk_changedpars;
    observations = [:Conc],
    figure = (; fontsize = 18),
    axis = (
        xlabel = "Time (hr)",
        ylabel = "Observed/Predicted \n CTMx Concentration (ng/mL)",
    ),
)

A simulated observations versus time plot overlaid with the scatter plot of the observed observations

Simulated Observations Plot

Changing the tvka and decreasing the tvv seemed to make an impact and observations go through the simulated lines.

To get a quick ballpark estimate of your PK parameters, we can do a NaivePooled analysis.

3.2.2.1 NaivePooled
pkfit_np = fit(pk_1cmp, pkpain_noplb, init_params(pk_1cmp), NaivePooled(); omegas = (:Ω,))
[ Info: Checking the initial parameter values.
[ Info: The initial negative log likelihood and its gradient are finite. Check passed.
Iter     Function value   Gradient norm 
     0     7.744356e+02     3.715711e+03
 * time: 0.01824784278869629
     1     2.343899e+02     1.747348e+03
 * time: 0.4253568649291992
     2     9.696232e+01     1.198088e+03
 * time: 0.42664504051208496
     3    -7.818699e+01     5.538151e+02
 * time: 0.4276578426361084
     4    -1.234803e+02     2.462514e+02
 * time: 0.4289078712463379
     5    -1.372888e+02     2.067458e+02
 * time: 0.43021082878112793
     6    -1.410579e+02     1.162950e+02
 * time: 0.4315478801727295
     7    -1.434754e+02     5.632816e+01
 * time: 0.432844877243042
     8    -1.453401e+02     7.859270e+01
 * time: 0.43419694900512695
     9    -1.498185e+02     1.455606e+02
 * time: 0.4356398582458496
    10    -1.534371e+02     1.303682e+02
 * time: 0.43718886375427246
    11    -1.563557e+02     5.975474e+01
 * time: 0.4388608932495117
    12    -1.575052e+02     9.308611e+00
 * time: 0.44019103050231934
    13    -1.579357e+02     1.234484e+01
 * time: 0.4415709972381592
    14    -1.581874e+02     7.478196e+00
 * time: 0.44291090965270996
    15    -1.582981e+02     2.027162e+00
 * time: 0.44421887397766113
    16    -1.583375e+02     5.578262e+00
 * time: 0.4455139636993408
    17    -1.583556e+02     4.727050e+00
 * time: 0.491588830947876
    18    -1.583644e+02     2.340173e+00
 * time: 0.492656946182251
    19    -1.583680e+02     7.738100e-01
 * time: 0.49354004859924316
    20    -1.583696e+02     3.300689e-01
 * time: 0.4943828582763672
    21    -1.583704e+02     3.641985e-01
 * time: 0.49517297744750977
    22    -1.583707e+02     4.365901e-01
 * time: 0.49597597122192383
    23    -1.583709e+02     3.887800e-01
 * time: 0.4967968463897705
    24    -1.583710e+02     2.766977e-01
 * time: 0.49781298637390137
    25    -1.583710e+02     1.758029e-01
 * time: 0.49864792823791504
    26    -1.583710e+02     1.133947e-01
 * time: 0.4994790554046631
    27    -1.583710e+02     7.922544e-02
 * time: 0.5002830028533936
    28    -1.583710e+02     5.954998e-02
 * time: 0.5011289119720459
    29    -1.583710e+02     4.157079e-02
 * time: 0.502051830291748
    30    -1.583710e+02     4.295447e-02
 * time: 0.5029549598693848
    31    -1.583710e+02     5.170753e-02
 * time: 0.5038449764251709
    32    -1.583710e+02     2.644383e-02
 * time: 0.5050609111785889
    33    -1.583710e+02     4.548993e-03
 * time: 0.5061628818511963
    34    -1.583710e+02     2.501804e-02
 * time: 0.5072529315948486
    35    -1.583710e+02     3.763440e-02
 * time: 0.5083599090576172
    36    -1.583710e+02     3.206026e-02
 * time: 0.5095510482788086
    37    -1.583710e+02     1.003698e-02
 * time: 0.5107579231262207
    38    -1.583710e+02     2.209089e-02
 * time: 0.5119888782501221
    39    -1.583710e+02     4.954172e-03
 * time: 0.5132079124450684
    40    -1.583710e+02     1.609373e-02
 * time: 0.514868974685669
    41    -1.583710e+02     1.579802e-02
 * time: 0.5161399841308594
    42    -1.583710e+02     1.014113e-03
 * time: 0.5176019668579102
    43    -1.583710e+02     6.050644e-03
 * time: 0.519230842590332
    44    -1.583710e+02     1.354412e-02
 * time: 0.5205178260803223
    45    -1.583710e+02     4.473248e-03
 * time: 0.5217909812927246
    46    -1.583710e+02     4.644735e-03
 * time: 0.5230579376220703
    47    -1.583710e+02     9.829910e-03
 * time: 0.5243349075317383
    48    -1.583710e+02     1.047561e-03
 * time: 0.5256619453430176
    49    -1.583710e+02     8.366895e-03
 * time: 0.527026891708374
    50    -1.583710e+02     7.879055e-04
 * time: 0.5283708572387695
FittedPumasModel

Successful minimization:                      true

Likelihood approximation:              NaivePooled
Log-likelihood value:                    158.37103
Number of subjects:                            120
Number of parameters:         Fixed      Optimized
                                  1              6
Observation records:         Active        Missing
    Conc:                      1320              0
    Total:                     1320              0

------------------
         Estimate
------------------
tvcl      3.0054
tvv      14.089
tvka     44.228
Ω₁,₁      0.0
Ω₂,₂      0.0
Ω₃,₃      0.0
σ_p       0.32999
------------------
coefficients_table(pkfit_np)
7×3 DataFrame
Row Parameter Description Estimate
String Abstract… Float64
1 tvcl Clearance (L/hr)\n 3.005
2 tvv Volume (L)\n 14.089
3 tvka Absorption rate constant (h-1)\n 44.228
4 Ω₁,₁ ΩCL 0.0
5 Ω₂,₂ ΩVc 0.0
6 Ω₃,₃ ΩKa 0.0
7 σ_p Proportional RUV\n 0.33

The final estimates from the NaivePooled approach seem reasonably close to our initial guess from NCA, except for the tvka parameter. We will stick with our initial guess.

One way to be cautious before going into a complete fitting routine is to evaluate the likelihood of the individual subjects given the initial parameter values and see if any subject(s) pops out as unreasonable. There are a few ways of doing this:

  • check the loglikelihood subject wise
  • check if there any influential subjects

Below, we are basically checking if the initial estimates for any subject are way off that we are unable to compute the initial loglikelihood.

lls = []
for subj in pkpain_noplb
    push!(lls, loglikelihood(pk_1cmp, subj, pkparam, FOCE()))
end
# the plot below is using native CairoMakie `hist`
hist(lls; bins = 10, normalization = :none, color = (:black, 0.5), x_gap = 0)

A histogram of the individual loglikelihoods

Histogram of Loglikelihoods

The distribution of the loglikelihood’s suggest no extreme outliers.

A more convenient way is to use the findinfluential function that provides a list of k top influential subjects by showing the normalized (minus) loglikelihood for each subject. As you can see below, the minus loglikelihood in the range of 16 agrees with the histogram plotted above.

influential_subjects = findinfluential(pk_1cmp, pkpain_noplb, pkparam, FOCE())
5-element Vector{NamedTuple{(:id, :nll), Tuple{String, Float64}}}:
 (id = "148", nll = 16.65965885684475)
 (id = "135", nll = 16.64898519007633)
 (id = "156", nll = 15.9590695566075)
 (id = "159", nll = 15.441218240496482)
 (id = "149", nll = 14.715134644119512)
3.2.2.2 FOCE

Now that we have a good handle on our data, lets go ahead and fit a population model with FOCE:

pkfit_1cmp = fit(pk_1cmp, pkpain_noplb, pkparam, FOCE(); constantcoef = (; tvka = 2))
[ Info: Checking the initial parameter values.
[ Info: The initial negative log likelihood and its gradient are finite. Check passed.
Iter     Function value   Gradient norm 
     0    -5.935351e+02     5.597318e+02
 * time: 9.417533874511719e-5
     1    -7.022088e+02     1.707063e+02
 * time: 0.14495611190795898
     2    -7.314067e+02     2.903269e+02
 * time: 0.20394206047058105
     3    -8.520591e+02     2.285888e+02
 * time: 0.27533912658691406
     4    -1.120191e+03     3.795410e+02
 * time: 0.41217708587646484
     5    -1.178784e+03     2.323978e+02
 * time: 0.4711461067199707
     6    -1.218320e+03     9.699907e+01
 * time: 0.5254302024841309
     7    -1.223641e+03     5.862105e+01
 * time: 0.5784971714019775
     8    -1.227620e+03     1.831402e+01
 * time: 0.6319541931152344
     9    -1.228381e+03     2.132323e+01
 * time: 0.6819491386413574
    10    -1.230098e+03     2.921228e+01
 * time: 0.7464981079101562
    11    -1.230854e+03     2.029662e+01
 * time: 0.7981832027435303
    12    -1.231116e+03     5.229099e+00
 * time: 0.8475320339202881
    13    -1.231179e+03     1.689231e+00
 * time: 0.8959650993347168
    14    -1.231187e+03     1.215379e+00
 * time: 0.9422111511230469
    15    -1.231188e+03     2.770381e-01
 * time: 0.9724321365356445
    16    -1.231188e+03     1.636651e-01
 * time: 1.0098600387573242
    17    -1.231188e+03     2.701087e-01
 * time: 1.0505599975585938
    18    -1.231188e+03     3.163373e-01
 * time: 1.0893371105194092
    19    -1.231188e+03     1.505097e-01
 * time: 1.127120018005371
    20    -1.231188e+03     2.485456e-02
 * time: 1.150825023651123
    21    -1.231188e+03     8.381370e-04
 * time: 1.1832220554351807
FittedPumasModel

Successful minimization:                      true

Likelihood approximation:                     FOCE
Log-likelihood value:                     1231.188
Number of subjects:                            120
Number of parameters:         Fixed      Optimized
                                  1              6
Observation records:         Active        Missing
    Conc:                      1320              0
    Total:                     1320              0

-------------------
         Estimate
-------------------
tvcl      3.1642
tvv      13.288
tvka      2.0
Ω₁,₁      0.08494
Ω₂,₂      0.048568
Ω₃,₃      5.5811
σ_p       0.10093
-------------------
infer(pkfit_1cmp)
[ Info: Calculating: variance-covariance matrix.
[ Info: Done.
Asymptotic inference results using sandwich estimator

Successful minimization:                      true

Likelihood approximation:                     FOCE
Log-likelihood value:                     1231.188
Number of subjects:                            120
Number of parameters:         Fixed      Optimized
                                  1              6
Observation records:         Active        Missing
    Conc:                      1320              0
    Total:                     1320              0

-------------------------------------------------------------------
        Estimate           SE                     95.0% C.I.
-------------------------------------------------------------------
tvcl     3.1642          0.086619         [ 2.9944  ;  3.334   ]
tvv     13.288           0.27481          [12.749   ; 13.827   ]
tvka     2.0             NaN              [  NaN    ;   NaN      ]
Ω₁,₁     0.08494         0.011022         [ 0.063338;  0.10654 ]
Ω₂,₂     0.048568        0.0063501        [ 0.036122;  0.061014]
Ω₃,₃     5.5811          1.2194           [ 3.1911  ;  7.9711  ]
σ_p      0.10093         0.0057196        [ 0.089718;  0.11214 ]
-------------------------------------------------------------------

Notice that tvka is fixed to 2 as we don’t have a lot of information before tmax. From the results above, we see that the parameter precision for this model is reasonable.

3.2.3 Two-compartment model

Just to be sure, let’s fit a 2-compartment model and evaluate:

pk_2cmp = @model begin

    @param begin
        """
        Clearance (L/hr)
        """
        tvcl  RealDomain(; lower = 0, init = 3.2)
        """
        Central Volume (L)
        """
        tvv  RealDomain(; lower = 0, init = 16.4)
        """
        Peripheral Volume (L)
        """
        tvvp  RealDomain(; lower = 0, init = 10)
        """
        Distributional Clearance (L/hr)
        """
        tvq  RealDomain(; lower = 0, init = 2)
        """
        Absorption rate constant (h-1)
        """
        tvka  RealDomain(; lower = 0, init = 1.3)
        """
          - ΩCL
          - ΩVc
          - ΩKa
          - ΩVp
          - ΩQ
        """
        Ω  PDiagDomain(init = [0.04, 0.04, 0.04, 0.04, 0.04])
        """
        Proportional RUV
        """
        σ_p  RealDomain(; lower = 0.0001, init = 0.2)
    end

    @random begin
        η ~ MvNormal(Ω)
    end

    @covariates begin
        """
        Dose (mg)
        """
        Dose
    end

    @pre begin
        CL = tvcl * exp(η[1])
        Vc = tvv * exp(η[2])
        Ka = tvka * exp(η[3])
        Vp = tvvp * exp(η[4])
        Q = tvq * exp(η[5])
    end

    @dynamics Depots1Central1Periph1

    @derived begin
        cp := @. Central / Vc
        """
        CTMx Concentration (ng/mL)
        """
        Conc ~ @. Normal(cp, cp * σ_p)
    end
end
PumasModel
  Parameters: tvcl, tvv, tvvp, tvq, tvka, Ω, σ_p
  Random effects: η
  Covariates: Dose
  Dynamical variables: Depot, Central, Peripheral
  Derived: Conc
  Observed: Conc
3.2.3.1 FOCE
pkfit_2cmp =
    fit(pk_2cmp, pkpain_noplb, init_params(pk_2cmp), FOCE(); constantcoef = (; tvka = 2))
[ Info: Checking the initial parameter values.
[ Info: The initial negative log likelihood and its gradient are finite. Check passed.
Iter     Function value   Gradient norm 
     0    -6.302369e+02     1.021050e+03
 * time: 7.605552673339844e-5
     1    -9.197817e+02     9.927951e+02
 * time: 0.12303709983825684
     2    -1.372640e+03     2.054986e+02
 * time: 0.25167012214660645
     3    -1.446326e+03     1.543987e+02
 * time: 0.3589470386505127
     4    -1.545570e+03     1.855028e+02
 * time: 0.46608495712280273
     5    -1.581449e+03     1.713157e+02
 * time: 0.6394550800323486
     6    -1.639433e+03     1.257382e+02
 * time: 0.7408580780029297
     7    -1.695964e+03     7.450539e+01
 * time: 0.846156120300293
     8    -1.722243e+03     5.961044e+01
 * time: 0.9619541168212891
     9    -1.736883e+03     7.320921e+01
 * time: 1.0635600090026855
    10    -1.753547e+03     7.501938e+01
 * time: 1.1681349277496338
    11    -1.764053e+03     6.185661e+01
 * time: 1.2780790328979492
    12    -1.778991e+03     4.831033e+01
 * time: 1.4065330028533936
    13    -1.791492e+03     4.943278e+01
 * time: 1.5292370319366455
    14    -1.799847e+03     2.871410e+01
 * time: 1.6684391498565674
    15    -1.805374e+03     7.520792e+01
 * time: 1.7992949485778809
    16    -1.816260e+03     2.990621e+01
 * time: 1.9334359169006348
    17    -1.818252e+03     2.401915e+01
 * time: 2.0416269302368164
    18    -1.822988e+03     2.587225e+01
 * time: 2.153588056564331
    19    -1.824653e+03     1.550517e+01
 * time: 2.26131010055542
    20    -1.826074e+03     1.788927e+01
 * time: 2.3819000720977783
    21    -1.826821e+03     1.888389e+01
 * time: 2.486293077468872
    22    -1.827900e+03     1.432840e+01
 * time: 2.595020055770874
    23    -1.828511e+03     9.422042e+00
 * time: 2.717142105102539
    24    -1.828754e+03     5.363448e+00
 * time: 2.8298659324645996
    25    -1.828862e+03     4.916153e+00
 * time: 2.9363150596618652
    26    -1.829007e+03     4.695757e+00
 * time: 3.059744119644165
    27    -1.829358e+03     1.090248e+01
 * time: 3.1702170372009277
    28    -1.829830e+03     1.451324e+01
 * time: 3.2822561264038086
    29    -1.830201e+03     1.108690e+01
 * time: 3.396393060684204
    30    -1.830360e+03     2.892290e+00
 * time: 3.523123025894165
    31    -1.830390e+03     1.698884e+00
 * time: 3.629073143005371
    32    -1.830404e+03     1.602129e+00
 * time: 3.734908103942871
    33    -1.830432e+03     2.823129e+00
 * time: 3.853224039077759
    34    -1.830475e+03     4.105407e+00
 * time: 3.977522134780884
    35    -1.830527e+03     5.093470e+00
 * time: 4.09006404876709
    36    -1.830592e+03     2.695875e+00
 * time: 4.216608047485352
    37    -1.830615e+03     3.470118e+00
 * time: 4.325258016586304
    38    -1.830623e+03     2.577088e+00
 * time: 4.435423135757446
    39    -1.830625e+03     1.765655e+00
 * time: 4.541749954223633
    40    -1.830627e+03     1.036472e+00
 * time: 4.654070138931274
    41    -1.830628e+03     1.124524e+00
 * time: 4.756410121917725
    42    -1.830628e+03     3.545350e-01
 * time: 4.852785110473633
    43    -1.830629e+03     4.125688e-01
 * time: 4.948312997817993
    44    -1.830630e+03     7.227016e-01
 * time: 5.049795150756836
    45    -1.830630e+03     5.071624e-01
 * time: 5.1625590324401855
    46    -1.830630e+03     1.064027e-01
 * time: 5.2576210498809814
    47    -1.830630e+03     5.753961e-03
 * time: 5.343439102172852
    48    -1.830630e+03     3.093135e-03
 * time: 5.424744129180908
    49    -1.830630e+03     2.462622e-03
 * time: 5.506067991256714
    50    -1.830630e+03     1.882491e-03
 * time: 5.585752964019775
    51    -1.830630e+03     1.882491e-03
 * time: 5.700093984603882
    52    -1.830630e+03     1.882491e-03
 * time: 5.821819067001343
FittedPumasModel

Successful minimization:                      true

Likelihood approximation:                     FOCE
Log-likelihood value:                    1830.6304
Number of subjects:                            120
Number of parameters:         Fixed      Optimized
                                  1             10
Observation records:         Active        Missing
    Conc:                      1320              0
    Total:                     1320              0

-------------------
         Estimate
-------------------
tvcl      2.8138
tvv      11.005
tvvp      5.54
tvq       1.5159
tvka      2.0
Ω₁,₁      0.10267
Ω₂,₂      0.060776
Ω₃,₃      1.2012
Ω₄,₄      0.42349
Ω₅,₅      0.24473
σ_p       0.048405
-------------------

3.3 Comparing One- versus Two-compartment models

The 2-compartment model has a much lower objective function compared to the 1-compartment. Let’s compare the estimates from the 2 models using the compare_estimates function.

compare_estimates(; pkfit_1cmp, pkfit_2cmp)
11×3 DataFrame
Row parameter pkfit_1cmp pkfit_2cmp
String Float64? Float64?
1 tvcl 3.1642 2.81378
2 tvv 13.288 11.0046
3 tvka 2.0 2.0
4 Ω₁,₁ 0.0849405 0.102669
5 Ω₂,₂ 0.0485682 0.0607755
6 Ω₃,₃ 5.58107 1.20116
7 σ_p 0.100928 0.0484049
8 tvvp missing 5.53998
9 tvq missing 1.51591
10 Ω₄,₄ missing 0.423493
11 Ω₅,₅ missing 0.244732

We perform a likelihood ratio test to compare the two nested models. The test statistic and the \(p\)-value clearly indicate that a 2-compartment model should be preferred.

lrtest(pkfit_1cmp, pkfit_2cmp)
Statistic:          1200.0
Degrees of freedom:      4
P-value:               0.0

We should also compare the other metrics and statistics, such ηshrinkage, ϵshrinkage, aic, and bic using the metrics_table function.

@chain metrics_table(pkfit_2cmp) begin
    leftjoin(metrics_table(pkfit_1cmp); on = :Metric, makeunique = true)
    rename!(:Value => :pk2cmp, :Value_1 => :pk1cmp)
end
20×3 DataFrame
Row Metric pk2cmp pk1cmp
String Any Any
1 Successful true true
2 Estimation Time 5.822 1.183
3 Subjects 120 120
4 Fixed Parameters 1 1
5 Optimized Parameters 10 6
6 Conc Active Observations 1320 1320
7 Conc Missing Observations 0 0
8 Total Active Observations 1320 1320
9 Total Missing Observations 0 0
10 Likelihood Approximation Pumas.FOCE Pumas.FOCE
11 LogLikelihood (LL) 1830.63 1231.19
12 -2LL -3661.26 -2462.38
13 AIC -3641.26 -2450.38
14 BIC -3589.41 -2419.26
15 (η-shrinkage) η₁ 0.037 0.016
16 (η-shrinkage) η₂ 0.047 0.04
17 (η-shrinkage) η₃ 0.516 0.733
18 (ϵ-shrinkage) Conc 0.185 0.105
19 (η-shrinkage) η₄ 0.287 missing
20 (η-shrinkage) η₅ 0.154 missing

We next generate some goodness of fit plots to compare which model is performing better. To do this, we first inspect the diagnostics of our model fit.

res_inspect_1cmp = inspect(pkfit_1cmp)
[ Info: Calculating predictions.
[ Info: Calculating weighted residuals.
[ Info: Calculating empirical bayes.
[ Info: Evaluating individual parameters.
[ Info: Evaluating dose control parameters.
[ Info: Done.
FittedPumasModelInspection

Fitting was successful: true
Likehood approximation used for weighted residuals : Pumas.FOCE()
res_inspect_2cmp = inspect(pkfit_2cmp)
[ Info: Calculating predictions.
[ Info: Calculating weighted residuals.
[ Info: Calculating empirical bayes.
[ Info: Evaluating individual parameters.
[ Info: Evaluating dose control parameters.
[ Info: Done.
FittedPumasModelInspection

Fitting was successful: true
Likehood approximation used for weighted residuals : Pumas.FOCE()
gof_1cmp = goodness_of_fit(res_inspect_1cmp; figure = (; fontsize = 12))

A 4-mosaic goodness of fit plot showing the 1-compartment model

Goodness of Fit Plots
gof_2cmp = goodness_of_fit(res_inspect_2cmp; figure = (; fontsize = 12))

Trend plot with observations for all individual subjects over time

Subject Fits

These plots clearly indicate that the 2-compartment model is a better fit compared to the 1-compartment model.

We can look at selected sample of individual plots.

fig_subject_fits = subject_fits(
    res_inspect_2cmp;
    separate = true,
    paginate = true,
    facet = (; combinelabels = true),
    figure = (; fontsize = 18),
    axis = (; xlabel = "Time (hr)", ylabel = "CTMx Concentration (ng/mL)"),
)
fig_subject_fits[1]

Trend plot with observations for 4 individual subjects over time

Subject Fits for 4 Individuals

There a lot of important plotting functions you can use for your standard model diagnostics. Please make sure to read the documentation for plotting. Below, we are checking the distribution of the empirical Bayes estimates.

empirical_bayes_dist(res_inspect_2cmp; zeroline_color = :red)

A histogram for the empirical Bayes distribution of all subject-specific parameters

Empirical Bayes Distribution
empirical_bayes_vs_covariates(
    res_inspect_2cmp;
    categorical = [:Dose],
    figure = (; resolution = (600, 800)),
)

A histogram for the empirical Bayes distribution of all subject-specific parameters stratified by categorical covariates

Empirical Bayes Distribution Stratified by Covariates

Clearly, our guess at tvka seems off-target. Let’s try and estimate tvka instead of fixing it to 2:

pkfit_2cmp_unfix_ka = fit(pk_2cmp, pkpain_noplb, init_params(pk_2cmp), FOCE())
[ Info: Checking the initial parameter values.
[ Info: The initial negative log likelihood and its gradient are finite. Check passed.
Iter     Function value   Gradient norm 
     0    -3.200734e+02     1.272671e+03
 * time: 6.604194641113281e-5
     1    -8.682982e+02     1.000199e+03
 * time: 0.23767900466918945
     2    -1.381870e+03     5.008081e+02
 * time: 0.39089322090148926
     3    -1.551053e+03     6.833490e+02
 * time: 0.5818040370941162
     4    -1.680887e+03     1.834586e+02
 * time: 0.7350270748138428
     5    -1.726118e+03     8.870274e+01
 * time: 0.9136261940002441
     6    -1.761023e+03     1.162036e+02
 * time: 1.0708370208740234
     7    -1.786619e+03     1.114552e+02
 * time: 1.2493510246276855
     8    -1.863556e+03     9.914305e+01
 * time: 1.4120330810546875
     9    -1.882942e+03     5.342676e+01
 * time: 1.596785068511963
    10    -1.888020e+03     2.010181e+01
 * time: 1.7567360401153564
    11    -1.889832e+03     1.867263e+01
 * time: 1.9429152011871338
    12    -1.891649e+03     1.668512e+01
 * time: 2.1512842178344727
    13    -1.892615e+03     1.820701e+01
 * time: 2.2954649925231934
    14    -1.893453e+03     1.745195e+01
 * time: 2.4424350261688232
    15    -1.894760e+03     1.850174e+01
 * time: 2.5724031925201416
    16    -1.895647e+03     1.773939e+01
 * time: 2.718567132949829
    17    -1.896597e+03     1.143462e+01
 * time: 2.8360559940338135
    18    -1.897114e+03     9.720097e+00
 * time: 3.007000207901001
    19    -1.897373e+03     6.054321e+00
 * time: 3.125545024871826
    20    -1.897498e+03     3.985954e+00
 * time: 3.2919070720672607
    21    -1.897571e+03     4.262464e+00
 * time: 3.4348690509796143
    22    -1.897633e+03     4.010234e+00
 * time: 3.57292103767395
    23    -1.897714e+03     4.805375e+00
 * time: 3.7323391437530518
    24    -1.897802e+03     3.508706e+00
 * time: 3.8882009983062744
    25    -1.897865e+03     3.691477e+00
 * time: 4.029857158660889
    26    -1.897900e+03     2.982720e+00
 * time: 4.147497177124023
    27    -1.897928e+03     2.563790e+00
 * time: 4.294849157333374
    28    -1.897968e+03     3.261484e+00
 * time: 4.409171104431152
    29    -1.898013e+03     3.064690e+00
 * time: 4.547143220901489
    30    -1.898040e+03     1.636525e+00
 * time: 4.672741174697876
    31    -1.898051e+03     1.439997e+00
 * time: 4.812849998474121
    32    -1.898057e+03     1.436504e+00
 * time: 4.924200057983398
    33    -1.898069e+03     1.881528e+00
 * time: 5.044975996017456
    34    -1.898095e+03     3.253165e+00
 * time: 5.1781229972839355
    35    -1.898142e+03     4.257942e+00
 * time: 5.295518159866333
    36    -1.898199e+03     3.685241e+00
 * time: 5.431471109390259
    37    -1.898245e+03     2.567364e+00
 * time: 5.557011127471924
    38    -1.898246e+03     2.561590e+00
 * time: 5.74012017250061
    39    -1.898251e+03     2.530885e+00
 * time: 5.901984214782715
    40    -1.898298e+03     2.673694e+00
 * time: 6.050952196121216
    41    -1.898300e+03     2.794535e+00
 * time: 6.193596124649048
    42    -1.898337e+03     3.768309e+00
 * time: 6.371883153915405
    43    -1.898415e+03     5.140597e+00
 * time: 6.517460107803345
    44    -1.898427e+03     4.646687e+00
 * time: 6.669670104980469
    45    -1.898432e+03     4.441103e+00
 * time: 6.896221160888672
    46    -1.898437e+03     4.297436e+00
 * time: 7.1012561321258545
    47    -1.898443e+03     4.170006e+00
 * time: 7.318238019943237
    48    -1.898448e+03     3.949707e+00
 * time: 7.572393178939819
    49    -1.898451e+03     3.720254e+00
 * time: 7.794032096862793
    50    -1.898451e+03     3.700859e+00
 * time: 8.032361030578613
    51    -1.898456e+03     3.967298e+00
 * time: 8.225088119506836
    52    -1.898479e+03     2.134121e+00
 * time: 8.347379207611084
    53    -1.898480e+03     7.166192e-01
 * time: 8.498102188110352
    54    -1.898480e+03     7.319824e-01
 * time: 8.635270118713379
    55    -1.898480e+03     1.358764e-01
 * time: 8.782921075820923
    56    -1.898480e+03     1.239822e-01
 * time: 9.024269104003906
    57    -1.898480e+03     1.239752e-01
 * time: 9.149968147277832
    58    -1.898480e+03     1.239711e-01
 * time: 9.332168102264404
    59    -1.898480e+03     1.239711e-01
 * time: 9.505474090576172
    60    -1.898480e+03     1.239711e-01
 * time: 9.697363138198853
    61    -1.898480e+03     1.248189e-01
 * time: 9.922837018966675
    62    -1.898480e+03     1.248189e-01
 * time: 10.208707094192505
    63    -1.898480e+03     1.248189e-01
 * time: 10.450537204742432
    64    -1.898480e+03     1.248189e-01
 * time: 10.722050189971924
    65    -1.898480e+03     1.248189e-01
 * time: 11.060665130615234
    66    -1.898480e+03     1.248189e-01
 * time: 11.312530040740967
    67    -1.898480e+03     1.248189e-01
 * time: 11.606091022491455
    68    -1.898480e+03     1.248189e-01
 * time: 11.855343103408813
    69    -1.898480e+03     1.248189e-01
 * time: 12.12081003189087
    70    -1.898480e+03     1.248189e-01
 * time: 12.322315216064453
FittedPumasModel

Successful minimization:                      true

Likelihood approximation:                     FOCE
Log-likelihood value:                    1898.4797
Number of subjects:                            120
Number of parameters:         Fixed      Optimized
                                  0             11
Observation records:         Active        Missing
    Conc:                      1320              0
    Total:                     1320              0

-------------------
         Estimate
-------------------
tvcl      2.6191
tvv      11.378
tvvp      8.4529
tvq       1.3164
tvka      4.8925
Ω₁,₁      0.13243
Ω₂,₂      0.05967
Ω₃,₃      0.41581
Ω₄,₄      0.080679
Ω₅,₅      0.24996
σ_p       0.049097
-------------------
compare_estimates(; pkfit_2cmp, pkfit_2cmp_unfix_ka)
11×3 DataFrame
Row parameter pkfit_2cmp pkfit_2cmp_unfix_ka
String Float64? Float64?
1 tvcl 2.81378 2.61912
2 tvv 11.0046 11.3783
3 tvvp 5.53998 8.45294
4 tvq 1.51591 1.31637
5 tvka 2.0 4.89251
6 Ω₁,₁ 0.102669 0.132432
7 Ω₂,₂ 0.0607755 0.0596696
8 Ω₃,₃ 1.20116 0.415809
9 Ω₄,₄ 0.423493 0.0806791
10 Ω₅,₅ 0.244732 0.249956
11 σ_p 0.0484049 0.0490975

Let’s revaluate the goodness of fits and η distribution plots.

Not much change in the general gof plots

res_inspect_2cmp_unfix_ka = inspect(pkfit_2cmp_unfix_ka)
[ Info: Calculating predictions.
[ Info: Calculating weighted residuals.
[ Info: Calculating empirical bayes.
[ Info: Evaluating individual parameters.
[ Info: Evaluating dose control parameters.
[ Info: Done.
FittedPumasModelInspection

Fitting was successful: true
Likehood approximation used for weighted residuals : Pumas.FOCE()
goodness_of_fit(res_inspect_2cmp_unfix_ka; figure = (; fontsize = 12))

A 4-mosaic goodness of fit plot showing the 2-compartment model

Goodness of Fit Plots

But you can see a huge improvement in the ηka, (η₃) distribution which is now centered around zero

empirical_bayes_vs_covariates(
    res_inspect_2cmp_unfix_ka;
    categorical = [:Dose],
    ebes = [:η₃],
    figure = (; resolution = (600, 800)),
)

A histogram for the empirical Bayes distribution of all subject-specific parameters stratified by categorical covariates

Empirical Bayes Distribution Stratified by Covariates

Finally looking at some individual plots for the same subjects as earlier:

fig_subject_fits2 = subject_fits(
    res_inspect_2cmp_unfix_ka;
    separate = true,
    paginate = true,
    facet = (; combinelabels = true, linkyaxes = false),
    figure = (; fontsize = 18),
    axis = (; xlabel = "Time (hr)", ylabel = "CTMx Concentration (ng/mL)"),
)
fig_subject_fits2[6]

Trend plot with observations for 4 individual subjects over time

Subject Fits for 4 Individuals

The randomly sampled individual fits don’t seem good in some individuals, but we can evaluate this via a vpc to see how to go about.

3.4 Visual Predictive Checks (VPC)

We can now perform a vpc to check. The default plots provide a 80% prediction interval and a 95% simulated CI (shaded area) around each of the quantiles

pk_vpc = vpc(
    pkfit_2cmp_unfix_ka,
    200;
    observations = [:Conc],
    stratify_by = [:Dose],
    ensemblealg = EnsembleThreads(), # multi-threading
)
[ Info: Continuous VPC
Visual Predictive Check
  Type of VPC: Continuous VPC
  Simulated populations: 200
  Subjects in data: 40
  Stratification variable(s): [:Dose]
  Confidence level: 0.95
  VPC lines: quantiles ([0.1, 0.5, 0.9])
vpc_plot(
    pk_2cmp,
    pk_vpc;
    rows = 1,
    columns = 3,
    figure = (; resolution = (1400, 1000), fontsize = 22),
    axis = (;
        xlabel = "Time (hr)",
        ylabel = "Observed/Predicted\n CTMx Concentration (ng/mL)",
    ),
    facet = (; combinelabels = true),
)

A visual predictive plot stratified by dose group

Visual Predictive Plots

The visual predictive check suggests that the model captures the data well across all dose levels.

4 Additional Help

If you have questions regarding this tutorial, please post them on our discourse site.