Population-level parameters: \(\theta\), \(\Omega\), \(c\), \(\sigma\)
Covariates: \(\text{Age}_i\), \(\text{Weight}_i\)
Random effects: \(\eta_i \sim \mathcal{N}(0, \Omega)\)
Individual derived parameters: \[ \begin{aligned} \text{Ka}_i & = \theta_1 \cdot e^{\eta_{i,1}} + c_1 \cdot \text{Age}_i \\ \text{CL}_i & = \theta_2 \cdot e^{\eta_{i,2}} \\ \text{V}_i & = \theta_3 \cdot e^{\eta_{i,3}} + c_2 \cdot \text{Weight}_i^{c_3} \end{aligned} \]
Dynamics: \[ \begin{aligned} \frac{d[\text{Depot}_i]}{dt} & = - \text{Ka}_i \cdot [\text{Depot}_i] \\ \frac{d[\text{Central}_i]}{dt} & = \text{Ka}_i \cdot [\text{Depot}_i] - \frac{\text{CL}_i}{V_i} \cdot [\text{Central}_i] \end{aligned} \]
Error model: \[ \text{Outcome}_i \sim \mathcal{N}(\text{Central}_i, \text{Central}_i \cdot \sigma) \]
Information processing mechanism
Loosely based on neurons
Mathematically, just a function!
NNs are useable anywhere where you’d use a function!
Population-level parameters: \(\theta\), \(\Omega\), \(c\), \(\sigma\)
Covariates: \(\text{Age}_i\), \(\text{Weight}_i\),
Random effects: \(\eta_i \sim \mathcal{N}(0, \Omega)\)
Individual derived parameters: \[ \begin{aligned} \text{Ka}_i & = \theta_1 \cdot e^{\eta_{i,1}} + c_1 \cdot \text{Age}_i + \\ \text{CL}_i & = \theta_2 \cdot e^{\eta_{i,2}} \\ \text{V}_i & = \theta_3 \cdot e^{\eta_{i,3}} + c_2 \cdot \text{Weight}_i^{c_3} + \end{aligned} \]Error model: \[ \text{Outcome}_i \sim \mathcal{N}(\text{Central}_i, \text{Central}_i \cdot \sigma) \]