using Pumas
using PharmaDatasets
using DataFramesMeta
using PumasUtilitiesCalculating Parameter Uncertainty
1 Introduction
A typical workflow for fitting a Pumas model and deriving parameter precision typically involves:
- Preparing the data and the model.
- Checking model-data compatibility.
- Obtaining initial parameter estimates.
- Fitting the model via a chosen estimation method.
- Interpreting the fit results.
- Computing parameter uncertainty based on the asymptotic variance-covariance formulas (robust or not).
- (Optionally) proceeding with more advanced techniques like bootstrapping or SIR for robust uncertainty quantification.
In previous tutorials, we already set up the data and performed a fit. We also obtained some parameter uncertainty estimates. In this tutorial, we will go more into depth with parameter uncertainty calculations using different methods. Exploratory data analysis (EDA), although extremely important, is out of scope here. Readers interested in EDA are encouraged to consult other tutorials.
2 Model and Data
2.1 Model Definition
Below is the PK model, named warfarin_pk_model, defined in Pumas. This model contains:
- Fixed effects (population parameters):
pop_CL, pop_Vc, pop_tabs, pop_lag - Inter-individual variability (IIV) components:
pk_Ω - Residual error model parameters:
σ_prop,σ_add - Covariates for scaling:
FSZCLandFSZV - Differential equations describing the PK behavior in the compartments.
warfarin_pk_model = @model begin
@metadata begin
desc = "Warfarin 1-compartment PK model (PD removed)"
timeu = u"hr"
end
@param begin
# PK parameters
"""
Clearance (L/hr)
"""
pop_CL ∈ RealDomain(lower = 0.0, init = 0.134)
"""
Central volume (L)
"""
pop_Vc ∈ RealDomain(lower = 0.0, init = 8.11)
"""
Absorption lag time (hr)
"""
pop_tabs ∈ RealDomain(lower = 0.0, init = 0.523)
"""
Lag time (hr)
"""
pop_lag ∈ RealDomain(lower = 0.0, init = 0.1)
# Inter-individual variability
"""
- ΩCL: Clearance
- ΩVc: Central volume
- Ωtabs: Absorption lag time
"""
pk_Ω ∈ PDiagDomain([0.01, 0.01, 0.01])
# Residual variability
"""
σ_prop: Proportional error
"""
σ_prop ∈ RealDomain(lower = 0.0, init = 0.00752)
"""
σ_add: Additive error
"""
σ_add ∈ RealDomain(lower = 0.0, init = 0.0661)
end
@random begin
pk_η ~ MvNormal(pk_Ω) # mean = 0, covariance = pk_Ω
end
@covariates begin
"""
FSZCL: Clearance scaling factor
"""
FSZCL
"""
FSZV: Volume scaling factor
"""
FSZV
end
@pre begin
CL = FSZCL * pop_CL * exp(pk_η[1])
Vc = FSZV * pop_Vc * exp(pk_η[2])
tabs = pop_tabs * exp(pk_η[3])
Ka = log(2) / tabs
end
@dosecontrol begin
lags = (Depot = pop_lag,)
end
@vars begin
cp := Central / Vc
end
@dynamics Depots1Central1
@derived begin
"""
Concentration (ng/mL)
"""
conc ~ @. Normal(cp, sqrt((σ_prop * cp)^2 + σ_add^2))
end
endPumasModel
Parameters: pop_CL, pop_Vc, pop_tabs, pop_lag, pk_Ω, σ_prop, σ_add
Random effects: pk_η
Covariates: FSZCL, FSZV
Dynamical system variables: Depot, Central
Dynamical system type: Closed form
Derived: conc
Observed: conc
2.2 Data Preparation
The Warfarin data used in this tutorial is pulled from PharmaDatasets for demonstration purposes. Note how the code reshapes and prepares the data in “wide” format for reading into Pumas. Only the conc column is treated as observations for the PK model.
warfarin_data = dataset("pumas/warfarin_pumas")
# Transform the data in a single chain of operations
warfarin_data_scales = @chain warfarin_data begin
@rtransform begin
# Scaling factors
:FSZV = :wtbl / 70 # volume scaling
:FSZCL = (:wtbl / 70)^0.75 # clearance scaling (allometric)
end
end| Row | id | time | evid | amt | cmt | conc | pca | wtbl | age | sex | FSZV | FSZCL |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Int64 | Float64 | Int64 | Float64? | Int64? | Float64? | Float64? | Float64 | Int64 | String1 | Float64 | Float64 | |
| 1 | 1 | 0.0 | 1 | 100.0 | 1 | missing | missing | 66.7 | 50 | M | 0.952857 | 0.96443 |
| 2 | 1 | 0.5 | 0 | missing | missing | 0.0 | missing | 66.7 | 50 | M | 0.952857 | 0.96443 |
| 3 | 1 | 1.0 | 0 | missing | missing | 1.9 | missing | 66.7 | 50 | M | 0.952857 | 0.96443 |
| 4 | 1 | 2.0 | 0 | missing | missing | 3.3 | missing | 66.7 | 50 | M | 0.952857 | 0.96443 |
| 5 | 1 | 3.0 | 0 | missing | missing | 6.6 | missing | 66.7 | 50 | M | 0.952857 | 0.96443 |
| 6 | 1 | 6.0 | 0 | missing | missing | 9.1 | missing | 66.7 | 50 | M | 0.952857 | 0.96443 |
| 7 | 1 | 9.0 | 0 | missing | missing | 10.8 | missing | 66.7 | 50 | M | 0.952857 | 0.96443 |
| 8 | 1 | 12.0 | 0 | missing | missing | 8.6 | missing | 66.7 | 50 | M | 0.952857 | 0.96443 |
| 9 | 1 | 24.0 | 0 | missing | missing | 5.6 | 44.0 | 66.7 | 50 | M | 0.952857 | 0.96443 |
| 10 | 1 | 36.0 | 0 | missing | missing | 4.0 | 27.0 | 66.7 | 50 | M | 0.952857 | 0.96443 |
| 11 | 1 | 48.0 | 0 | missing | missing | 2.7 | 28.0 | 66.7 | 50 | M | 0.952857 | 0.96443 |
| 12 | 1 | 72.0 | 0 | missing | missing | 0.8 | 31.0 | 66.7 | 50 | M | 0.952857 | 0.96443 |
| 13 | 1 | 96.0 | 0 | missing | missing | missing | 60.0 | 66.7 | 50 | M | 0.952857 | 0.96443 |
| ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
| 319 | 32 | 48.0 | 0 | missing | missing | 6.9 | 24.0 | 62.0 | 21 | M | 0.885714 | 0.912999 |
| 320 | 32 | 72.0 | 0 | missing | missing | 4.4 | 23.0 | 62.0 | 21 | M | 0.885714 | 0.912999 |
| 321 | 32 | 96.0 | 0 | missing | missing | 3.5 | 20.0 | 62.0 | 21 | M | 0.885714 | 0.912999 |
| 322 | 32 | 120.0 | 0 | missing | missing | 2.5 | 22.0 | 62.0 | 21 | M | 0.885714 | 0.912999 |
| 323 | 33 | 0.0 | 1 | 100.0 | 1 | missing | missing | 66.7 | 50 | M | 0.952857 | 0.96443 |
| 324 | 33 | 0.0 | 0 | missing | missing | missing | 100.0 | 66.7 | 50 | M | 0.952857 | 0.96443 |
| 325 | 33 | 24.0 | 0 | missing | missing | 9.2 | 49.0 | 66.7 | 50 | M | 0.952857 | 0.96443 |
| 326 | 33 | 36.0 | 0 | missing | missing | 8.5 | 32.0 | 66.7 | 50 | M | 0.952857 | 0.96443 |
| 327 | 33 | 48.0 | 0 | missing | missing | 6.4 | 26.0 | 66.7 | 50 | M | 0.952857 | 0.96443 |
| 328 | 33 | 72.0 | 0 | missing | missing | 4.8 | 22.0 | 66.7 | 50 | M | 0.952857 | 0.96443 |
| 329 | 33 | 96.0 | 0 | missing | missing | 3.1 | 28.0 | 66.7 | 50 | M | 0.952857 | 0.96443 |
| 330 | 33 | 120.0 | 0 | missing | missing | 2.5 | 33.0 | 66.7 | 50 | M | 0.952857 | 0.96443 |
3 Creating a Pumas Population
Below is the creation of a population object in Pumas using read_pumas. Only the conc data are treated as the observation variable:
pop_pk = read_pumas(
warfarin_data_scales;
id = :id,
time = :time,
amt = :amt,
cmt = :cmt,
evid = :evid,
covariates = [:sex, :wtbl, :FSZV, :FSZCL],
observations = [:conc],
)Population
Subjects: 32
Covariates: sex, wtbl, FSZV, FSZCL
Observations: conc
The same data can contain multiple endpoints or PD observations. In this tutorial, the focus is solely on PK fitting. PKPD modeling on this warfarin dataset will be introduced later.
Also note, that parameter inference can be expensive and for that reason we simplified the model for this tutorial to decrease overall runtime.
3.1 Obtaining fit results
Following the examples in previous tutorials, we perform a fit. We need the output of the fit function call to perform inference to obtain parameter uncertainty estimates.
# A named tuple of parameter values
param_vals = (
pop_CL = 0.134,
pop_Vc = 8.11,
pop_tabs = 0.523,
pop_lag = 0.1,
pk_Ω = Diagonal([0.01, 0.01, 0.01]),
σ_prop = 0.00752,
σ_add = 0.0661,
)
foce_fit = fit(warfarin_pk_model, pop_pk, param_vals, FOCE();)[ Info: Checking the initial parameter values. [ Info: The initial negative log likelihood and its gradient are finite. Check passed. Iter Function value Gradient norm 0 1.209064e+04 1.489225e+04 * time: 0.053121089935302734 1 2.643772e+03 3.167516e+03 * time: 4.353262901306152 2 1.836601e+03 2.118430e+03 * time: 4.378635883331299 3 9.351337e+02 8.722439e+02 * time: 4.403965950012207 4 6.402300e+02 4.199225e+02 * time: 4.429430961608887 5 5.103664e+02 1.642121e+02 * time: 4.451404094696045 6 4.760464e+02 5.453749e+01 * time: 4.472965955734253 7 4.703757e+02 3.643518e+01 * time: 4.493746042251587 8 4.699019e+02 3.135992e+01 * time: 4.514163970947266 9 4.697614e+02 2.953531e+01 * time: 4.534344911575317 10 4.693153e+02 2.463233e+01 * time: 4.555310964584351 11 4.685743e+02 2.580427e+01 * time: 4.5756919384002686 12 4.675133e+02 3.864937e+01 * time: 4.596426010131836 13 4.666775e+02 5.495470e+01 * time: 4.618933916091919 14 4.661197e+02 5.692101e+01 * time: 4.644572019577026 15 4.656782e+02 4.770992e+01 * time: 4.669893026351929 16 4.651802e+02 3.087698e+01 * time: 4.6943519115448 17 4.645523e+02 1.184834e+01 * time: 4.720148086547852 18 4.641447e+02 1.162249e+01 * time: 4.745578050613403 19 4.639978e+02 1.125144e+01 * time: 4.7701170444488525 20 4.639307e+02 1.156463e+01 * time: 4.794377088546753 21 4.638001e+02 1.312870e+01 * time: 4.818643093109131 22 4.635282e+02 1.480920e+01 * time: 4.843302011489868 23 4.630353e+02 2.169377e+01 * time: 4.961672067642212 24 4.623847e+02 4.478029e+01 * time: 4.984257936477661 25 4.617426e+02 6.468975e+01 * time: 5.0067689418792725 26 4.610293e+02 7.776996e+01 * time: 5.02910304069519 27 4.597628e+02 8.785260e+01 * time: 5.050715923309326 28 4.566753e+02 9.769803e+01 * time: 5.073649883270264 29 4.490421e+02 1.008838e+02 * time: 5.097464084625244 30 4.391868e+02 9.978816e+01 * time: 5.124541997909546 31 4.130704e+02 5.917685e+01 * time: 5.155893087387085 32 4.055780e+02 3.852824e+01 * time: 5.183881998062134 33 4.023118e+02 3.889618e+01 * time: 5.21340799331665 34 4.012516e+02 3.694778e+01 * time: 5.254909992218018 35 4.004391e+02 2.061948e+01 * time: 5.28421688079834 36 3.983040e+02 3.508423e+01 * time: 5.311774015426636 37 3.969705e+02 3.841039e+01 * time: 5.341007947921753 38 3.965462e+02 3.738343e+01 * time: 5.369385004043579 39 3.950409e+02 3.064789e+01 * time: 5.4786388874053955 40 3.945750e+02 2.876429e+01 * time: 5.50225305557251 41 3.937725e+02 2.571438e+01 * time: 5.526115894317627 42 3.933955e+02 2.436112e+01 * time: 5.54985499382019 43 3.927564e+02 2.051069e+01 * time: 5.572654962539673 44 3.916020e+02 1.629035e+01 * time: 5.596206903457642 45 3.886991e+02 2.689824e+01 * time: 5.620804071426392 46 3.870054e+02 2.298582e+01 * time: 5.6438140869140625 47 3.853691e+02 2.614992e+01 * time: 5.667226076126099 48 3.841730e+02 2.207557e+01 * time: 5.690661907196045 49 3.825113e+02 2.204399e+01 * time: 5.717371940612793 50 3.808880e+02 2.444784e+01 * time: 5.746648073196411 51 3.800407e+02 1.250611e+01 * time: 5.7745819091796875 52 3.798092e+02 1.167926e+01 * time: 5.826616048812866 53 3.797789e+02 1.162382e+01 * time: 5.848037958145142 54 3.797069e+02 1.152441e+01 * time: 5.868757009506226 55 3.794424e+02 1.132717e+01 * time: 5.890776872634888 56 3.788131e+02 2.006438e+01 * time: 5.912086009979248 57 3.771525e+02 3.584695e+01 * time: 5.93341588973999 58 3.731299e+02 5.697249e+01 * time: 5.95533299446106 59 3.658671e+02 6.542042e+01 * time: 5.978360891342163 60 3.604194e+02 4.036489e+01 * time: 6.000776052474976 61 3.532841e+02 1.574006e+01 * time: 6.022028923034668 62 3.520181e+02 1.393300e+01 * time: 6.047055959701538 63 3.517984e+02 6.701188e+00 * time: 6.092717885971069 64 3.517541e+02 3.503978e+00 * time: 6.1143739223480225 65 3.516436e+02 8.720957e+00 * time: 6.13796591758728 66 3.511845e+02 1.406200e+01 * time: 6.167356967926025 67 3.510647e+02 2.540378e+00 * time: 6.188047885894775 68 3.510209e+02 3.157201e+00 * time: 6.209033966064453 69 3.509959e+02 3.045642e+00 * time: 6.230506896972656 70 3.509765e+02 2.673143e+00 * time: 6.251734972000122 71 3.509751e+02 2.603975e+00 * time: 6.27112603187561 72 3.509724e+02 2.505719e+00 * time: 6.305401086807251 73 3.509666e+02 2.379768e+00 * time: 6.324588060379028 74 3.509504e+02 3.572030e+00 * time: 6.344253063201904 75 3.509123e+02 6.006350e+00 * time: 6.364238977432251 76 3.508288e+02 8.822995e+00 * time: 6.383581876754761 77 3.506944e+02 9.708012e+00 * time: 6.402738094329834 78 3.505767e+02 6.092631e+00 * time: 6.422445058822632 79 3.505358e+02 1.734431e+00 * time: 6.442036867141724 80 3.505314e+02 6.749379e-01 * time: 6.479696989059448 81 3.505313e+02 6.721982e-01 * time: 6.50142502784729 82 3.505312e+02 6.699487e-01 * time: 6.522875070571899 83 3.505307e+02 6.606824e-01 * time: 6.544504880905151 84 3.505298e+02 6.413909e-01 * time: 6.5658838748931885 85 3.505274e+02 9.083363e-01 * time: 6.587253093719482 86 3.505222e+02 1.339147e+00 * time: 6.608867883682251 87 3.505129e+02 1.608661e+00 * time: 6.643795967102051 88 3.505026e+02 1.293164e+00 * time: 6.664731025695801 89 3.504973e+02 5.140504e-01 * time: 6.686349868774414 90 3.504963e+02 6.340189e-02 * time: 6.707606077194214 91 3.504963e+02 3.137914e-03 * time: 6.728453874588013 92 3.504963e+02 5.681551e-04 * time: 6.747812986373901
FittedPumasModel
Dynamical system type: Closed form
Number of subjects: 32
Observation records: Active Missing
conc: 251 47
Total: 251 47
Number of parameters: Constant Optimized
0 9
Likelihood approximation: FOCE
Likelihood optimizer: BFGS
Termination Reason: GradientNorm
Log-likelihood value: -350.49625
--------------------
Estimate
--------------------
pop_CL 0.13465
pop_Vc 8.0535
pop_tabs 0.55061
pop_lag 0.87158
pk_Ω₁,₁ 0.070642
pk_Ω₂,₂ 0.018302
pk_Ω₃,₃ 0.91326
σ_prop 0.090096
σ_add 0.39115
--------------------
3.2 Computing Parameter Precision with infer
The infer function in Pumas estimates the uncertainty (precision) of parameter estimates. Depending on the chosen method, infer can provide standard errors, confidence intervals, and correlation matrices.
The signature for infer often looks like:
infer(
fpm::FittedPumasModel;
level = 0.95,
rethrow_error::Bool = false,
sandwich_estimator::Bool = true,
)where:
fpm::FittedPumasModel: The result offit(e.g.,foce_fit).level: The confidence interval level (e.g., 0.95). The confidence intervals are calculated as the(1-level)/2and(1+level)/2quantiles of the estimated parametersrethrow_error: If rethrow_error is false (the default value), no error will be thrown if the variance-covariance matrix estimator fails. If it is true, an error will be thrown if the estimator fails.sandwich_estimator: Whether to use the sandwich estimator also known as the robust variance-covariance estimator. If set totrue(the default value), the sandwich estimator will be used. If set tofalse, the standard error will be calculated using the inverse of the Hessian matrix calculated using finite difference derivatives of the gradient calculated using automatic differentiation.
An example usage:
inference_results = infer(foce_fit; level = 0.95)[ Info: Calculating: variance-covariance matrix. [ Info: Done.
Asymptotic inference results using sandwich estimator
Dynamical system type: Closed form
Number of subjects: 32
Observation records: Active Missing
conc: 251 47
Total: 251 47
Number of parameters: Constant Optimized
0 9
Likelihood approximation: FOCE
Likelihood optimizer: BFGS
Termination Reason: GradientNorm
Log-likelihood value: -350.49625
---------------------------------------------------------
Estimate SE 95.0% C.I.
---------------------------------------------------------
pop_CL 0.13465 0.0066546 [ 0.12161 ; 0.1477 ]
pop_Vc 8.0535 0.22108 [ 7.6201 ; 8.4868 ]
pop_tabs 0.55061 0.18702 [ 0.18406 ; 0.91717 ]
pop_lag 0.87158 0.056687 [ 0.76048 ; 0.98269 ]
pk_Ω₁,₁ 0.070642 0.024577 [ 0.022472 ; 0.11881 ]
pk_Ω₂,₂ 0.018302 0.0051549 [ 0.0081988; 0.028406]
pk_Ω₃,₃ 0.91326 0.40637 [ 0.11678 ; 1.7097 ]
σ_prop 0.090096 0.014521 [ 0.061636 ; 0.11856 ]
σ_add 0.39115 0.065398 [ 0.26297 ; 0.51932 ]
---------------------------------------------------------
This is the usual asymptotic variance-covariance estimator and we already saw this previous tutorials.
To get a matrix representation of this, use vcov()
vcov(inference_results)9×9 Symmetric{Float64, Matrix{Float64}}:
4.42841e-5 0.000217445 0.000302094 … 3.99916e-6 0.00019736
0.000217445 0.0488775 0.00571323 -0.000846166 -0.0056657
0.000302094 0.00571323 0.0349767 0.000227818 0.00412692
-7.40855e-5 -0.00207014 -0.00450616 0.000458813 0.000494683
0.000120614 5.09406e-5 0.00164596 -9.1424e-5 0.000734901
2.90008e-7 0.000292148 -0.000131446 … 3.99746e-6 1.80866e-5
-0.000263152 -0.023877 -0.0275659 0.00328879 0.0126135
3.99916e-6 -0.000846166 0.000227818 0.000210856 0.000518153
0.00019736 -0.0056657 0.00412692 0.000518153 0.00427687
and to get the condition number of the correlation matrix implied by vcov use
cond(inference_results)50.11623683487897
Some users request the condition number of the covariance matrix itself and even if the use is often misguided it can be calculated as well.
cond(inference_results; correlation = false)13082.75373321667
It is also possible to calculate the correlation matrix from the vcov output using the cov2cor function
cor_from_cov = cov2cor(vcov(inference_results))9×9 Symmetric{Float64, Matrix{Float64}}:
1.0 0.147799 0.242733 … -0.0973098 0.0413859 0.453494
0.147799 1.0 0.138178 -0.265766 -0.263578 -0.391865
0.242733 0.138178 1.0 -0.362707 0.083889 0.337422
-0.196394 -0.165183 -0.425047 0.555027 0.557394 0.133439
0.737483 0.00937536 0.358102 -0.28125 -0.25618 0.45724
0.00845409 0.256348 -0.136345 … 0.315212 0.0534038 0.0536508
-0.0973098 -0.265766 -0.362707 1.0 0.557335 0.47462
0.0413859 -0.263578 0.083889 0.557335 1.0 0.545635
0.453494 -0.391865 0.337422 0.47462 0.545635 1.0
And we see that the cond call above matches the condition number of the correlation matrix
cond(cor_from_cov)50.1162368348788
3.2.1 Failure of the asymptotic variance-covariance matrix
It is well-known that the asymptotic variance-covariance matrix can sometimes fail to compute. This can happen for a variety of reasons including:
- There are parameters very close to a bound (often 0)
- The parameter vector does not represent a local minimum (optimization failed)
- The parameter vector does represent a local minimum but it’s not the global solution
The first one is often easy to check. The problematic parameters can be ones than have lower or upper bounds set. Often this will be a variance of standard deviation that has moved very close to the lower boundary. Consider removing the associated random effect if the problematic parameter is a variance in its specification or error model component if a combined additive and proportional error model is used and a standard deviation is close to zero.
It is also possible that the parameters do not represent a local minimum. In other words, they come from a failed fit. In this case, it can often be hard to perform the associated calculations in a stable way, but most importantly the results would not be interpretable even if they can be calculated in this case. The formulas are only valid for parameters that represent the actual (maximum likelihood) estimates. Please try to restart the optimization at different starting points in this case.
If you have reasons to believe that the model should indeed be a combined error model or if the random effect should be present it is also possible that the model converged to a local minimum that is not the global minimum. If the optimization happened to move to a region of the parameter state space that is hard to get out of you will often have to restart the fit at different parameter values. It is not possible to verify if the minimum is global in general, but it is always advised to try out more than one set of initial parameters when fitting models.
3.2.2 Bootstrap
Sometimes it is appropriate to use a different method to calculate estimate the uncertainty of the estimated parameters. Bootstrapping is a very popular approach that is simply but can often come a quite significant computational cost. Researchers often perform a bootstrapping step if their computational budget allows it or if the asymptotic variance-covariance estimator fails. Bootstrapping is advantageous because it does not rely on any invertability of matrices and it cannot produce negative variance confidence intervals because the resampled estimator respects the bounds of the model.
The signature for bootstrapping in infer looks as follows.
infer(fpm::FittedPumasModel, bts::Bootstrap; level = 0.95)This does not help much before also looking at the interface for Bootstrap itself.
Bootstrap(;
rng = Random.default_rng,
samples = 200,
stratify_by = nothing,
ensemblealg = EnsembleThreads(),
)Bootstrap accepts a random number generator rng, the number of resampled datasets to produce samples, if sampling should be stratified according to the covariates in stratify_by, and finally the ensemble algorithm to control parallelization across fits. On the JuliaHub platform this can be used together with distributed computing to perform many resampled estimations in a short time.
bootstrap_results = infer(foce_fit, Bootstrap(samples = 50); level = 0.95)┌ Info: Bootstrap inference finished. │ Total resampled fits = 50 │ Success rate = 1.0 └ Unique resampled populations = 50
Bootstrap inference results
Dynamical system type: Closed form
Number of subjects: 32
Observation records: Active Missing
conc: 251 47
Total: 251 47
Number of parameters: Constant Optimized
0 9
Likelihood approximation: FOCE
Likelihood optimizer: BFGS
Termination Reason: GradientNorm
Log-likelihood value: -350.49625
---------------------------------------------------------
Estimate SE 95.0% C.I.
---------------------------------------------------------
pop_CL 0.13465 0.0072513 [ 0.12047 ; 0.14762 ]
pop_Vc 8.0535 0.27439 [ 7.5916 ; 8.5223 ]
pop_tabs 0.55061 0.18583 [ 0.27962 ; 0.97564 ]
pop_lag 0.87158 0.15236 [ 0.65502 ; 1.3799 ]
pk_Ω₁,₁ 0.070642 0.025184 [ 0.015682 ; 0.10846 ]
pk_Ω₂,₂ 0.018302 0.0057014 [ 0.0069524; 0.028122]
pk_Ω₃,₃ 0.91326 0.72401 [ 0.32434 ; 2.5986 ]
σ_prop 0.090096 0.014461 [ 0.067789 ; 0.12017 ]
σ_add 0.39115 0.072606 [ 0.24957 ; 0.51139 ]
---------------------------------------------------------
Successful fits: 50 out of 50
Unique resampled populations: 50
No stratification.
Again, we can calculate a covariance matrix based on the samples with vcov
vcov(bootstrap_results)9×9 Symmetric{Float64, Matrix{Float64}}:
5.25821e-5 2.21192e-5 0.000328735 … 1.77024e-5 0.00027751
2.21192e-5 0.0752893 0.0146347 -0.00158147 -0.0104772
0.000328735 0.0146347 0.0345316 0.000300488 0.0025155
7.71931e-6 -0.0111713 -0.00988743 0.000630733 0.00328267
0.000136217 -0.000302203 0.00169022 -6.90336e-5 0.000945981
-5.31069e-7 0.000525595 -0.000300389 … -1.45633e-5 -4.74572e-5
-0.000312775 -0.081522 -0.0599075 0.00530373 0.0222594
1.77024e-5 -0.00158147 0.000300488 0.000209108 0.000505273
0.00027751 -0.0104772 0.0025155 0.000505273 0.00527166
and we can even get a DataFrame that includes all the estimated parameters from the sampled population fits
DataFrame(bootstrap_results.vcov)| Row | pop_CL | pop_Vc | pop_tabs | pop_lag | pk_Ω₁,₁ | pk_Ω₂,₂ | pk_Ω₃,₃ | σ_prop | σ_add |
|---|---|---|---|---|---|---|---|---|---|
| Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | |
| 1 | 0.135655 | 8.09531 | 0.723392 | 0.76981 | 0.0829879 | 0.0125593 | 0.504945 | 0.081468 | 0.337014 |
| 2 | 0.141313 | 7.76679 | 0.725322 | 0.755009 | 0.132208 | 0.0179243 | 0.662656 | 0.0950127 | 0.434892 |
| 3 | 0.129578 | 7.90864 | 0.604956 | 0.898933 | 0.0400858 | 0.0132248 | 1.03431 | 0.110615 | 0.325303 |
| 4 | 0.138915 | 8.14757 | 0.830404 | 0.876447 | 0.0758985 | 0.0190915 | 0.670585 | 0.11259 | 0.404395 |
| 5 | 0.141628 | 7.78378 | 0.233512 | 0.908156 | 0.0852226 | 0.0273409 | 2.17333 | 0.0798403 | 0.439139 |
| 6 | 0.135901 | 7.85705 | 0.457504 | 0.887974 | 0.0643707 | 0.0125646 | 0.977419 | 0.0903572 | 0.402783 |
| 7 | 0.134574 | 8.53169 | 0.44694 | 0.879975 | 0.0553517 | 0.0198864 | 0.463956 | 0.0714972 | 0.237616 |
| 8 | 0.126475 | 7.74229 | 0.518508 | 0.747203 | 0.0682741 | 0.011416 | 0.312261 | 0.0710326 | 0.341272 |
| 9 | 0.14325 | 8.3463 | 0.752489 | 0.82721 | 0.0816744 | 0.0154706 | 0.449257 | 0.100071 | 0.327065 |
| 10 | 0.138724 | 7.49508 | 0.563806 | 0.921858 | 0.0775345 | 0.0166807 | 1.90622 | 0.120712 | 0.522768 |
| 11 | 0.147751 | 8.22582 | 0.607901 | 0.94766 | 0.0909949 | 0.0203662 | 0.983486 | 0.107894 | 0.461179 |
| 12 | 0.147992 | 8.4901 | 0.745076 | 0.716402 | 0.0875194 | 0.0137959 | 0.402646 | 0.0900335 | 0.324092 |
| 13 | 0.136943 | 7.84736 | 0.484166 | 1.39629 | 0.0791582 | 0.015795 | 1.21279 | 0.0876623 | 0.455068 |
| ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
| 39 | 0.128979 | 8.15299 | 0.610063 | 0.946761 | 0.0476978 | 0.0274871 | 2.15611 | 0.0952027 | 0.431241 |
| 40 | 0.138666 | 8.04706 | 0.389379 | 0.886289 | 0.0831764 | 0.0135139 | 0.365958 | 0.0744485 | 0.320968 |
| 41 | 0.144983 | 7.83283 | 0.591541 | 0.807101 | 0.0998208 | 0.0194001 | 1.06084 | 0.0951495 | 0.438016 |
| 42 | 0.124494 | 7.97014 | 0.448237 | 0.958107 | 0.0146472 | 0.013238 | 1.22321 | 0.0999983 | 0.27502 |
| 43 | 0.138851 | 7.97022 | 0.533094 | 0.895852 | 0.0877334 | 0.0165478 | 0.750999 | 0.0759199 | 0.398216 |
| 44 | 0.130762 | 8.10454 | 0.476695 | 1.38355 | 0.0773728 | 0.0227124 | 1.58534 | 0.0900281 | 0.403465 |
| 45 | 0.13027 | 7.72969 | 0.323921 | 0.968314 | 0.0276605 | 0.0217859 | 1.61339 | 0.108636 | 0.32418 |
| 46 | 0.119303 | 8.47044 | 0.384415 | 0.864812 | 0.0192453 | 0.024333 | 1.01968 | 0.0887914 | 0.290447 |
| 47 | 0.133901 | 8.63117 | 0.650708 | 0.637193 | 0.0823794 | 0.032108 | 0.649987 | 0.0664102 | 0.247834 |
| 48 | 0.14172 | 8.007 | 0.702202 | 0.823757 | 0.0947967 | 0.014127 | 0.661848 | 0.0978865 | 0.416734 |
| 49 | 0.142572 | 7.87683 | 1.01645 | 0.885258 | 0.0744171 | 0.00573492 | 0.403144 | 0.11085 | 0.472414 |
| 50 | 0.146353 | 7.58796 | 0.538174 | 0.918404 | 0.0875999 | 0.0125992 | 1.02895 | 0.106454 | 0.468807 |
This is very useful for histogram plotting of parameter distributions.
3.2.3 Sampling Importance Re-sampling
Pumas has support for inference through Sampling Importance Re-sampling through the SIR() input to infer. The signature for SIR in infer looks as follows.
infer(fpm::FittedPumasModel, sir::SIR; level = 0.95, ensemblealg = EnsembleThreads())This performs sampling importance re-sampling for the population in fpm. The confidence intervals are calculated as the (1-level)/2 and (1+level)/2 quantiles of the sampled parameters. ensemblealg can be EnsembleThreads() (the default value) to use multi-threading or EnsembleSerial() to use a single thread.
The signature for the SIR specification is
SIR(; rng, samples, resamples)SIR accepts a random number generator rng, the number of samples from the proposal, samples, can be set and to complete the specification the resample has to be set. It is suggested that samples is at least 5 times larger than resamples in practice to have sufficient samples to resample from.
sir_results = infer(foce_fit, SIR(samples = 1000, resamples = 200); level = 0.95)[ Info: Calculating: variance-covariance matrix. [ Info: Done. [ Info: Running SIR. [ Info: Resampling.
Simulated inference results
Dynamical system type: Closed form
Number of subjects: 32
Observation records: Active Missing
conc: 251 47
Total: 251 47
Number of parameters: Constant Optimized
0 9
Likelihood approximation: FOCE
Likelihood optimizer: BFGS
Termination Reason: GradientNorm
Log-likelihood value: -350.49625
---------------------------------------------------------
Estimate SE 95.0% C.I.
---------------------------------------------------------
pop_CL 0.13465 0.0053138 [ 0.12565 ; 0.14525 ]
pop_Vc 8.0535 0.20484 [ 7.6255 ; 8.4246 ]
pop_tabs 0.55061 0.162 [ 0.23184 ; 0.86558 ]
pop_lag 0.87158 0.038097 [ 0.79259 ; 0.93344 ]
pk_Ω₁,₁ 0.070642 0.017629 [ 0.047283 ; 0.10996 ]
pk_Ω₂,₂ 0.018302 0.0052361 [ 0.0099247; 0.029419]
pk_Ω₃,₃ 0.91326 0.3 [ 0.50994 ; 1.6129 ]
σ_prop 0.090096 0.0080173 [ 0.077456 ; 0.10788 ]
σ_add 0.39115 0.034273 [ 0.34223 ; 0.47791 ]
---------------------------------------------------------
Notice, that SIR bases its first samples number of samples from a truncated multivariate normal distribution with mean of the maximum likelihood population level parameters and covariance matrix that is the asymptotic matrix calculated by infer(fpm). This means that to use SIR the matrix is question has to be successfully calculated by infer(fpm) under the hood.
The methods for vcov and DataFrame(sir_results.vcov) that we saw for Bootstrap also applies here
vcov(sir_results)9×9 Symmetric{Float64, Matrix{Float64}}:
2.82362e-5 0.000199627 7.04089e-5 … -4.39593e-6 4.7719e-5
0.000199627 0.0419611 0.00802586 5.36131e-5 -0.000757165
7.04089e-5 0.00802586 0.0262447 0.000112214 0.000821665
6.53524e-6 0.000145355 -0.00166748 -6.28735e-7 0.000337775
4.82846e-5 0.000179796 0.00054256 -3.64205e-5 0.000284623
-1.18475e-7 0.000136803 -6.54439e-5 … 1.17821e-7 2.51547e-5
-0.000159224 -0.00563792 -0.0255239 0.000261353 0.00289314
-4.39593e-6 5.36131e-5 0.000112214 6.42772e-5 -3.53706e-6
4.7719e-5 -0.000757165 0.000821665 -3.53706e-6 0.00117464
and
DataFrame(sir_results.vcov)| Row | pop_CL | pop_Vc | pop_tabs | pop_lag | pk_Ω₁,₁ | pk_Ω₂,₂ | pk_Ω₃,₃ | σ_prop | σ_add |
|---|---|---|---|---|---|---|---|---|---|
| Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | |
| 1 | 0.135467 | 8.27219 | 0.447142 | 0.912476 | 0.072936 | 0.022553 | 1.11215 | 0.0794054 | 0.427842 |
| 2 | 0.140607 | 8.40374 | 0.779105 | 0.903015 | 0.0615872 | 0.0256693 | 0.727147 | 0.094959 | 0.409641 |
| 3 | 0.136851 | 7.85121 | 0.568205 | 0.81585 | 0.0902318 | 0.0198466 | 0.840192 | 0.0966242 | 0.372005 |
| 4 | 0.128471 | 8.11062 | 0.374316 | 0.865583 | 0.0891658 | 0.0236463 | 1.4377 | 0.084451 | 0.462991 |
| 5 | 0.131859 | 7.81027 | 0.414021 | 0.909735 | 0.0596216 | 0.0120463 | 1.27544 | 0.0777852 | 0.448946 |
| 6 | 0.132896 | 7.96042 | 0.511543 | 0.848601 | 0.0473163 | 0.019751 | 0.524463 | 0.0984046 | 0.402095 |
| 7 | 0.131018 | 7.95873 | 0.231875 | 0.876061 | 0.0810904 | 0.0176112 | 1.11993 | 0.0847211 | 0.337166 |
| 8 | 0.133792 | 7.71674 | 0.292892 | 0.876897 | 0.0654437 | 0.0102946 | 1.36546 | 0.0931553 | 0.43545 |
| 9 | 0.135194 | 7.99405 | 0.591318 | 0.892245 | 0.0513799 | 0.0207882 | 1.0637 | 0.0907462 | 0.412023 |
| 10 | 0.131934 | 8.13058 | 0.856681 | 0.694512 | 0.0770589 | 0.0163564 | 0.564371 | 0.0978994 | 0.383528 |
| 11 | 0.129826 | 8.00784 | 0.454967 | 0.865458 | 0.0781138 | 0.0176946 | 0.661374 | 0.092287 | 0.393923 |
| 12 | 0.138105 | 7.92409 | 0.843253 | 0.828782 | 0.0680509 | 0.025981 | 1.16372 | 0.0932036 | 0.438948 |
| 13 | 0.133335 | 7.95377 | 0.643653 | 0.792133 | 0.0650019 | 0.0219219 | 0.548065 | 0.0902033 | 0.377141 |
| ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
| 189 | 0.128912 | 8.42068 | 0.721579 | 0.862742 | 0.0714481 | 0.0193996 | 0.855546 | 0.0875884 | 0.371549 |
| 190 | 0.13514 | 7.90483 | 0.445864 | 0.858001 | 0.0487741 | 0.021965 | 1.04151 | 0.0867419 | 0.367457 |
| 191 | 0.142548 | 8.04022 | 0.458774 | 0.903464 | 0.107689 | 0.028245 | 1.18795 | 0.0896559 | 0.465399 |
| 192 | 0.12397 | 7.76461 | 0.449947 | 0.84043 | 0.0665313 | 0.0127125 | 1.16389 | 0.0884248 | 0.411184 |
| 193 | 0.143362 | 8.2206 | 0.545946 | 0.896416 | 0.087462 | 0.0246814 | 1.27817 | 0.0962316 | 0.499953 |
| 194 | 0.137591 | 7.96574 | 0.394666 | 0.838367 | 0.052019 | 0.0165662 | 0.854376 | 0.085668 | 0.326127 |
| 195 | 0.141646 | 8.26331 | 0.606119 | 0.855604 | 0.0882481 | 0.0177219 | 0.666899 | 0.089314 | 0.417019 |
| 196 | 0.138322 | 8.06494 | 0.393612 | 0.877799 | 0.0451024 | 0.0203099 | 1.30527 | 0.10402 | 0.367433 |
| 197 | 0.135316 | 8.12806 | 0.768041 | 0.892892 | 0.0682673 | 0.0147626 | 0.519906 | 0.0939125 | 0.389685 |
| 198 | 0.131811 | 7.95002 | 0.649913 | 0.883438 | 0.0879107 | 0.0154658 | 0.79821 | 0.0919493 | 0.42082 |
| 199 | 0.135262 | 7.88392 | 0.689797 | 0.829027 | 0.0875159 | 0.0294114 | 1.37123 | 0.0831895 | 0.477845 |
| 200 | 0.145708 | 7.99315 | 0.641199 | 0.944179 | 0.115268 | 0.0161439 | 0.688667 | 0.0972852 | 0.449988 |
3.2.4 Marginal MCMC
An alternative to Bootstrap and SIR is to simply use the MarginalMCMC sampler which is a Hamiltonian Monte Carlo (HMC) No-U-Turn Sampler (NUTS) that will sample from the marginal loglikelihood. This means that individual effects are marginalized out and then we sample the population level parameters. This does not resample populations like Bootstrap so inference may be more stable if many resampled populations lead to extreme estimates and it differs from SIR in that it does not need the asymptotic covariance matrix to be calculated and sampled from.
This method requires slightly more understanding from the user when setting the options that can be found through the docstring of MarginalMCMC. Some knowledge of Bayesian inference is advised.
inference_results = infer(foce_fit, MarginalMCMC(); level = 0.95)As sampling based inference can be computationally intensive we exclude the actual invocation of this method from this tutorial.
4 Concluding Remarks
This tutorial showcased a typical Pumas workflow for parameter inference in Pumas models. We showed the different methods supported by Pumas for calculating parameter uncertainty.