using Pumas, PharmaDatasets
using DataFramesMeta, CategoricalArrays
using CairoMakie, AlgebraOfGraphics
using SummaryTablesIntroduction to Simulations in Pumas
1 Introduction
Simulation is a fundamental part of most pharmacometrics analyses. Fortunately, Pumas provides a powerful interface for simulating a variety of endpoints without the need for additional software. This tutorial will serve as a basic introduction to simulation in Pumas and will focus on simulating additional observations or alternative dosing scenarios in an existing population. Advanced simulation (e.g., clinical trial simulation) will be discussed in later tutorials.
2 Getting Started
Simulations are performed using the simobs function which has multiple methods, all of which are detailed in the Pumas documentation. Checking ?simobs in the REPL provides the following function signature:
simobs(
model::AbstractPumasModel,
population::Union{Subject,Population},
param,
randeffs = sample_randeffs(model, param, population);
obstimes = nothing,
ensemblealg = EnsembleSerial(),
diffeq_options = NamedTuple(),
rng = Random.default_rng(),
simulate_error = Val(true),
)The first three positional arguments (model, population, param) are all required.
modelexpects anAbstractPumasModel, which (for now) refers to a model defined using the@modelmacro.populationaccepts aPopulationwhich was discussed in Module 4), or a singleSubjectwhich will be discussed later in the current module.paramshould be a single parameter set defined as aNamedTupleor a vector of such parameter sets.
The remaining arguments have default values and need not be defined explicitly; however, it is worth knowing how the defaults affect each simulation.
randeffsis used to specify the random effect (“eta”) values for each subject. If left to the default, these values are generated by sampling the associated prior distributions defined in the model.ensemblealgis used to select the parallelization mode to be used for the simulation.diffeq_optionscan be used to pass additional options to the differential equation solver if the model does not have an analytical solution.rngcan be used to specify the random number generator to be used for the simulation.simulate_errorcan be used to disable (false) the inclusion of RUV in the value returned by the predictive distribution’s error model.
Many users are likely familiar with the concept of a random number generator (RNG) and the role they play in computational exercises where values are randomly sampled from a distribution. Using an RNG will make it (nearly) impossible to reproduce the results of a simulation unless steps are taken at the start to ensure reproducibility. In short, your results will differ slightly from those in the tutorial if you are executing the code locally, and that is to be expected. We will discuss this topic in greater detail later; for now, just focus on understanding the simulation workflow.
3 Setup
The examples below were created using the final integrated PK/PD model for warfarin. If you have downloaded this tutorial and are working through it locally, make sure you execute the code in the setup block before continuing. The example code assumes that the warfarin dataset (adeval), model (mdl), and fitted pumas model (“fpm”, myfit) all exist in your current session.
#* read dataset from PharmaDatasets
adeval = dataset("pumas/warfarin_pumas")
# population
mypop = read_pumas(adeval; observations = [:conc, :pca], covariates = [:wtbl])
# warfarin model
mdl = @model begin
@metadata begin
desc = "Integrated Warfarin PK/PD model"
timeu = u"hr"
end
@param begin
# PK parameters
# Clearance, L/hr
tvcl ∈ RealDomain(lower = 0.0, init = 0.134)
# Volume of distribution, central, L
tvvc ∈ RealDomain(lower = 0.0, init = 8.11)
# absorption rate constant, hr^-1
tvka ∈ RealDomain(lower = 0.0, init = 1.32)
# absorption lag, hr
tvalag ∈ RealDomain(lower = 0.0, init = 0.1)
# PD parameters
# Baseline, %
tve0 ∈ RealDomain(lower = 0.0, init = 95, upper = 100)
# Imax, %
tvimax ∈ RealDomain(lower = 0.0, init = 0.8, upper = 1)
# IC50, mg/L
tvic50 ∈ RealDomain(lower = 0.0, init = 1.0)
# Turnover
tvturn ∈ RealDomain(lower = 0.0, init = 14.0)
# Inter-individual variability
"""
- Ωcl
- Ωvc
- Ωka
"""
Ωpk ∈ PDiagDomain([0.01, 0.01, 0.01])
"""
- Ωe0
- Ωic50
"""
Ωpd ∈ PDiagDomain([0.01, 0.01])
# Residual variability
# proportional error, pk
σprop_pk ∈ RealDomain(lower = 0.0, init = 0.2)
# additive error, pk, mg/L
σadd_pk ∈ RealDomain(lower = 0.0, init = 0.2)
# additive error, pca, %
σadd_pd ∈ RealDomain(lower = 0.0, init = 1)
end
@random begin
# mean = 0, covariance = Ωpk
ηpk ~ MvNormal(Ωpk)
# mean = 0, covariance = Ωpd
ηpd ~ MvNormal(Ωpd)
end
@covariates wtbl
@pre begin
# PK
cl = tvcl * (wtbl / 70)^0.75 * exp(ηpk[1])
vc = tvvc * (wtbl / 70) * exp(ηpk[2])
ka = tvka * exp(ηpk[3])
# PD
e0 = tve0 * exp(ηpd[1])
imax = tvimax
ic50 = tvic50 * exp(ηpd[2])
turn = tvturn
#kout = log(2) / turn
kout = 1 / turn
kin = e0 * kout
end
@dosecontrol begin
lags = (depot = tvalag,)
end
@init begin
e = e0
end
@vars begin
# inhibitory model
imdl := 1 - (imax * (central / vc)) / (ic50 + (central / vc))
end
@dynamics begin
depot' = -ka * depot
central' = ka * depot - (cl / vc) * central
e' = kin * imdl - kout * e
end
@derived begin
cp := @. central / vc
# warfarin concentration, mg/L
conc ~ @. Normal(cp, sqrt((σprop_pk * cp)^2 + σadd_pk^2))
# prothrombin complex activity, % of normal
pca ~ @. Normal(e, σadd_pd)
end
end
# fitted pumas model, fpm
myfit = fit(mdl, mypop, init_params(mdl), FOCE())[ Info: Checking the initial parameter values. [ Info: The initial negative log likelihood and its gradient are finite. Check passed. Iter Function value Gradient norm 0 5.536943e+03 7.052675e+03 * time: 0.04047703742980957 1 1.762032e+03 1.253034e+03 * time: 2.811324119567871 2 1.449413e+03 6.274412e+02 * time: 3.8159611225128174 3 1.331405e+03 2.099880e+02 * time: 4.813470125198364 4 1.310843e+03 1.627399e+02 * time: 5.8135600090026855 5 1.295073e+03 1.376531e+02 * time: 8.53337812423706 6 1.282335e+03 1.324314e+02 * time: 9.60521411895752 7 1.275524e+03 9.521788e+01 * time: 10.600411176681519 8 1.271552e+03 5.354883e+01 * time: 11.54372501373291 9 1.269315e+03 2.407046e+01 * time: 12.508581161499023 10 1.268615e+03 2.368964e+01 * time: 13.456582069396973 11 1.268257e+03 2.366048e+01 * time: 14.390335083007812 12 1.267352e+03 3.190950e+01 * time: 15.326550006866455 13 1.265336e+03 5.399187e+01 * time: 16.22954511642456 14 1.260582e+03 8.775888e+01 * time: 17.111937999725342 15 1.252929e+03 1.110735e+02 * time: 17.928004026412964 16 1.246526e+03 8.328859e+01 * time: 18.71481204032898 17 1.240724e+03 8.711808e+01 * time: 19.482946157455444 18 1.236881e+03 7.439216e+01 * time: 20.259448051452637 19 1.232291e+03 6.878129e+01 * time: 21.0018630027771 20 1.227181e+03 5.604034e+01 * time: 21.73366403579712 21 1.223093e+03 3.856728e+01 * time: 22.458101987838745 22 1.221064e+03 5.186425e+01 * time: 23.182790994644165 23 1.220113e+03 4.306874e+01 * time: 23.906623125076294 24 1.218936e+03 2.178259e+01 * time: 24.638844966888428 25 1.217831e+03 2.144752e+01 * time: 25.36596703529358 26 1.216775e+03 2.201560e+01 * time: 26.090232133865356 27 1.215938e+03 2.969273e+01 * time: 26.805341005325317 28 1.214922e+03 3.438177e+01 * time: 27.51904010772705 29 1.212881e+03 4.013028e+01 * time: 28.237519025802612 30 1.207231e+03 5.214921e+01 * time: 28.976107120513916 31 1.197000e+03 6.567320e+01 * time: 29.709606170654297 32 1.189039e+03 6.178093e+01 * time: 30.434771060943604 33 1.173765e+03 7.561378e+01 * time: 31.150236129760742 34 1.171088e+03 2.385028e+01 * time: 31.87293815612793 35 1.170366e+03 2.359334e+01 * time: 32.58821105957031 36 1.170030e+03 2.394220e+01 * time: 33.29846906661987 37 1.169536e+03 2.287562e+01 * time: 34.00157713890076 38 1.168453e+03 1.921641e+01 * time: 34.72014498710632 39 1.166697e+03 1.661200e+01 * time: 35.438637018203735 40 1.164753e+03 2.146306e+01 * time: 36.15893816947937 41 1.163396e+03 1.589737e+01 * time: 36.891162157058716 42 1.162810e+03 1.879805e+01 * time: 37.60688018798828 43 1.162593e+03 1.922942e+01 * time: 38.333057165145874 44 1.162146e+03 1.865903e+01 * time: 39.04715299606323 45 1.161045e+03 2.060103e+01 * time: 39.76336598396301 46 1.158095e+03 4.011930e+01 * time: 40.479026079177856 47 1.150009e+03 6.883385e+01 * time: 41.21449518203735 48 1.147406e+03 7.331890e+01 * time: 42.05571508407593 49 1.144610e+03 7.504906e+01 * time: 42.900644063949585 50 1.138023e+03 6.294973e+01 * time: 43.67860698699951 51 1.132705e+03 4.283010e+01 * time: 44.45889616012573 52 1.129075e+03 2.327949e+01 * time: 45.24944615364075 53 1.128255e+03 2.383372e+01 * time: 46.0436110496521 54 1.127697e+03 2.546345e+01 * time: 46.829432010650635 55 1.126978e+03 2.642229e+01 * time: 47.6283540725708 56 1.126254e+03 2.679647e+01 * time: 48.583171129226685 57 1.124269e+03 2.481494e+01 * time: 49.88638520240784 58 1.121409e+03 3.925982e+01 * time: 51.87938404083252 59 1.118180e+03 3.554716e+01 * time: 52.86155319213867 60 1.116311e+03 1.691327e+01 * time: 53.70243310928345 61 1.115933e+03 1.725048e+01 * time: 54.581916093826294 62 1.115750e+03 1.702130e+01 * time: 55.55463218688965 63 1.115157e+03 1.748009e+01 * time: 56.4709370136261 64 1.113379e+03 2.744244e+01 * time: 57.32971715927124 65 1.107471e+03 4.999798e+01 * time: 58.26607608795166 66 1.099217e+03 7.740471e+01 * time: 59.567793130874634 67 1.098357e+03 6.707599e+01 * time: 60.75169897079468 68 1.093578e+03 3.715565e+01 * time: 61.95774602890015 69 1.090146e+03 1.668216e+01 * time: 63.16390919685364 70 1.088869e+03 1.082846e+01 * time: 64.35664701461792 71 1.087895e+03 9.101141e+00 * time: 65.48611307144165 72 1.086966e+03 1.225604e+01 * time: 66.59634399414062 73 1.086349e+03 1.200808e+01 * time: 67.59993100166321 74 1.086021e+03 9.321254e+00 * time: 68.57169318199158 75 1.085858e+03 8.113658e+00 * time: 69.52956700325012 76 1.085776e+03 8.127275e+00 * time: 70.4882071018219 77 1.085607e+03 7.969729e+00 * time: 71.46570301055908 78 1.085219e+03 7.491405e+00 * time: 72.446613073349 79 1.084323e+03 1.248692e+01 * time: 73.44785404205322 80 1.082506e+03 2.097437e+01 * time: 74.46820712089539 81 1.079393e+03 2.578588e+01 * time: 75.50782918930054 82 1.077539e+03 8.916753e+00 * time: 76.53583407402039 83 1.077366e+03 1.950844e+00 * time: 77.53611207008362 84 1.077341e+03 1.114665e+00 * time: 78.54902911186218 85 1.077339e+03 1.131449e+00 * time: 79.54549908638 86 1.077338e+03 1.121807e+00 * time: 80.54905700683594 87 1.077335e+03 1.078011e+00 * time: 81.53591418266296 88 1.077329e+03 1.045886e+00 * time: 82.51691317558289 89 1.077316e+03 1.385483e+00 * time: 83.50935316085815 90 1.077292e+03 1.538313e+00 * time: 84.51403403282166 91 1.077257e+03 1.233268e+00 * time: 85.54174304008484 92 1.077228e+03 5.728438e-01 * time: 86.55996298789978 93 1.077219e+03 5.059868e-01 * time: 87.56942009925842 94 1.077218e+03 5.033585e-01 * time: 88.57844400405884 95 1.077218e+03 5.028758e-01 * time: 89.56705713272095 96 1.077218e+03 5.022152e-01 * time: 90.57410097122192 97 1.077217e+03 5.008362e-01 * time: 91.5552351474762 98 1.077216e+03 4.977174e-01 * time: 92.54172611236572 99 1.077212e+03 4.905485e-01 * time: 93.52854800224304 100 1.077202e+03 7.608520e-01 * time: 94.52535820007324 101 1.077182e+03 1.030465e+00 * time: 95.50503706932068 102 1.077153e+03 1.039180e+00 * time: 96.47164011001587 103 1.077130e+03 6.005695e-01 * time: 97.47609996795654 104 1.077123e+03 5.073935e-01 * time: 98.5042941570282 105 1.077122e+03 4.817809e-01 * time: 99.48327612876892 106 1.077122e+03 4.675462e-01 * time: 100.48115110397339 107 1.077122e+03 4.482640e-01 * time: 101.47480297088623 108 1.077121e+03 4.167810e-01 * time: 102.46560215950012 109 1.077119e+03 4.160156e-01 * time: 103.45274114608765 110 1.077115e+03 7.459635e-01 * time: 104.43729615211487 111 1.077106e+03 1.228925e+00 * time: 105.4296350479126 112 1.077083e+03 1.876077e+00 * time: 106.441721200943 113 1.077043e+03 2.711759e+00 * time: 107.44700908660889 114 1.076990e+03 3.472557e+00 * time: 108.44899201393127 115 1.076942e+03 2.744137e+00 * time: 109.46661615371704 116 1.076925e+03 9.131430e-01 * time: 110.48312616348267 117 1.076924e+03 9.225454e-01 * time: 111.48173999786377 118 1.076924e+03 9.211516e-01 * time: 112.46145606040955 119 1.076923e+03 9.099628e-01 * time: 113.47241806983948 120 1.076920e+03 1.072665e+00 * time: 114.48391008377075 121 1.076913e+03 1.902228e+00 * time: 115.49304103851318 122 1.076897e+03 2.867368e+00 * time: 116.49854111671448 123 1.076863e+03 3.341982e+00 * time: 117.51395416259766 124 1.076807e+03 2.150147e+00 * time: 118.53945899009705 125 1.076761e+03 2.996847e-01 * time: 119.55092716217041 126 1.076749e+03 7.551790e-01 * time: 120.55191111564636 127 1.076747e+03 8.967744e-01 * time: 121.5616180896759 128 1.076746e+03 7.027976e-01 * time: 122.56762409210205 129 1.076744e+03 5.080790e-01 * time: 123.57818007469177 130 1.076743e+03 1.635753e-01 * time: 124.59108901023865 131 1.076741e+03 1.794543e-01 * time: 125.61469507217407 132 1.076740e+03 1.890049e-01 * time: 126.60721898078918 133 1.076740e+03 1.923774e-01 * time: 127.62169599533081 134 1.076740e+03 1.972350e-01 * time: 128.6147871017456 135 1.076740e+03 2.001884e-01 * time: 129.59330797195435 136 1.076740e+03 2.031750e-01 * time: 130.58932304382324 137 1.076740e+03 2.057419e-01 * time: 131.57091116905212 138 1.076740e+03 2.081866e-01 * time: 132.56923508644104 139 1.076740e+03 2.083821e-01 * time: 133.56802415847778 140 1.076740e+03 2.000800e-01 * time: 134.56514716148376 141 1.076739e+03 1.697404e-01 * time: 135.57195401191711 142 1.076738e+03 1.576578e-01 * time: 136.69113898277283 143 1.076737e+03 7.985707e-02 * time: 138.14655900001526 144 1.076737e+03 1.937434e-02 * time: 139.71912217140198 145 1.076737e+03 2.909237e-03 * time: 140.88156914710999 146 1.076737e+03 8.634669e-04 * time: 141.97339797019958
FittedPumasModel
Dynamical system type: Nonlinear ODE
Solver(s): (OrdinaryDiffEqVerner.Vern7,OrdinaryDiffEqRosenbrock.Rodas5P)
Number of subjects: 32
Observation records: Active Missing
conc: 251 47
pca: 232 66
Total: 483 113
Number of parameters: Constant Optimized
0 16
Likelihood approximation: FOCE
Likelihood optimizer: BFGS
Termination Reason: GradientNorm
Log-likelihood value: -1076.7369
----------------------
Estimate
----------------------
tvcl 0.13551
tvvc 7.9849
tvka 1.1742
tvalag 0.87341
tve0 96.616
tvimax 1.0
tvic50 1.1737
tvturn 18.828
Ωpk₁,₁ 0.069236
Ωpk₂,₂ 0.021885
Ωpk₃,₃ 0.83994
Ωpd₁,₁ 0.0028192
Ωpd₂,₂ 0.18162
σprop_pk 0.08854
σadd_pk 0.4189
σadd_pd 4.1536
----------------------
4 Simulation Basics
- Simulation complexity increases as the conditions in a given scenario diverge from the set of conditions (e.g., population, dosage regimen) used to develop the underlying model.
- We examine four scenarios with increasing complexity to introduce the user to simulations in Pumas.
4.1 Scenario 1
We begin with the simple goal of generating complete profiles for each subject in the original dataset.
- Simple because underlying population and dosage regimen are unchanged.
Two approaches,
predictandsimobspredictnot technically simulation, but end result is the same, primary difference is the lack ofRUVcompared tosimobs. The random effects will additionally be set to the empirical bayes estimates.
# sampling times from studies
stimes = [0.5, 1, 1.5, 2, 3, 6, 9, 12, 24, 36, 48, 72, 96, 120, 144]
# predictions based on individual EBEs and obstimes
# if passed, obstimes are merged with existing observation times vector
mypred = predict(myfit, myfit.data; obstimes = stimes)Prediction
Subjects: 32
Predictions: conc, pca
Covariates: wtbl
With a few simple modifications, the mypred object can used for NCA. Refer to the documentation for more information on performing NCA in Pumas.
mynca = @chain DataFrame(mypred) begin
# merge conc and conc_ipred into new column, conc_new
transform([:conc, :conc_ipred] => ByRow((c, i) -> coalesce(c, i)) => :conc_new)
# update route column for NCA
@transform :route = "ev"
# create nca population, specify obs col as conc_new
read_nca(_; observations = :conc_new)
run_nca(_)
endNCA Report
Timestamp: 2025-09-24T08:39:52.332
Version number: 0.1.0
Output Parameters DataFrame
32×38 DataFrame
Row │ id dose tlag tmax cmax tlast clast clast_ ⋯
│ String Float64 Float64 Float64 Float64 Float64 Float64 Float6 ⋯
─────┼──────────────────────────────────────────────────────────────────────────
1 │ 1 100.0 0.5 9.0 10.8 144.0 0.124115 0.124 ⋯
2 │ 2 100.0 0.5 9.0 11.2304 144.0 1.10587 1.093
3 │ 3 120.0 0.5 9.0 14.4 144.0 2.25022 2.241
4 │ 4 60.0 0.5 6.0 11.9 144.0 1.48714 1.505
5 │ 5 113.0 0.5 3.0 8.93322 144.0 1.22051 1.200 ⋯
6 │ 6 90.0 0.5 3.0 13.4 144.0 0.0272853 0.044
7 │ 7 135.0 0.5 2.0 17.6 144.0 0.71204 0.873
8 │ 8 75.0 0.5 9.0 12.9 144.0 0.808874 0.719
⋮ │ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱
26 │ 27 120.0 0.5 6.0 15.3014 144.0 1.40167 1.548 ⋯
27 │ 28 120.0 0.5 6.0 12.3473 144.0 1.58808 1.535
28 │ 29 153.0 0.5 6.0 11.5899 144.0 1.24201 1.379
29 │ 30 105.0 0.5 6.0 12.4077 144.0 1.35182 1.407
30 │ 31 125.0 0.5 6.0 12.0114 144.0 1.59054 1.663 ⋯
31 │ 32 93.0 0.5 6.0 11.3265 144.0 1.82322 1.816
32 │ 33 100.0 0.5 6.0 11.638 144.0 1.75404 1.728
31 columns and 17 rows omitted
- An example of a similar analysis using
simobs.
simobs(myfit.model, myfit.data, coef(myfit), empirical_bayes(myfit); obstimes = stimes)Simulated population (Vector{<:Subject})
Simulated subjects: 32
Simulated variables: conc, pca
- Example post-processing for
mypred
@chain DataFrame(mypred) begin
# only observations
filter(df -> df.evid == 0, _)
# if conc missing, 1, else 0
transform(:conc => ByRow(c -> ismissing(c) ? 1 : 0) => :isnew)
# merge conc and conc_ipred into new column, conc_new
transform([:conc, :conc_ipred] => ByRow((c, i) -> coalesce(c, i)) => :conc_new)
# CT scatter plot
data(_) *
mapping(
:time => "Time After Dose, hours",
:conc_new => "Warfarin Concentration, mg/L",
group = :id => nonnumeric,
color = :isnew => renamer(0 => "No", 1 => "Yes") => "Predicted",
) *
visual(Scatter)
draw(
_;
axis = (;
title = "Individual Concentration-Time Profiles",
subtitle = "Warfarin ~ TAD",
),
)
end4.2 Scenario 2
In this scenario we generate observation (
conc,pca) time profiles for the trial population following a one-time LD of 0.75 mg/kg PO.- Same population, different dosage regimen lets us examine the
SubjectandDosageRegimenconstructors without the additional complexity of creating a virtual population from scratch.
- Same population, different dosage regimen lets us examine the
Subject Constructor
The Subject constructor is a fundamental part of most simulation workflows in Pumas. If you have not reviewed the corresponding tutorial, we recommend doing so before proceeding here.
Often, the best approach to building a simulation in Pumas is to focus on a single subject workflow, then, once everything is working, use a repeated-evaluation construct to complete the analysis.
In the initial setup, we showcase the mutating
Subjectsyntax by accessing data from the firstSubjectstored inmyfit.data[1].- Converting the mg/kg dose to mg requires
wtblwhich we extract from thecovariatesfield.
- Converting the mg/kg dose to mg requires
# first subject in population used in model fit
sub01 =
Subject(myfit.data[1]; events = DosageRegimen(0.75 * myfit.data[1].covariates(0).wtbl))
sim01 = simobs(
mdl, # model
sub01, # subject or population of subjects
coef(myfit), # parameter estimates
empirical_bayes(myfit)[1]; # random effects (i.e., EBEs)
obstimes = stimes, # obstimes for full study profile
simulate_error = false, # set RUV=0
)SimulatedObservations
Simulated variables: conc, pca
Time: [0.5, 1.0, 1.5, 2.0, 3.0, 6.0, 9.0, 12.0, 24.0, 36.0, 48.0, 72.0, 96.0, 120.0, 144.0]
With a working single subject simulation, we can move on to simulating observations for a population.
Here, we take a slightly different approach by creating a dataframe of subject-level covariates and iterating over each row to create our population.
- Note, we could have iterated over all
Subjects store inmyfit.dataand modified them as we did above; this syntax below shows an equivalent approach that may be more intuitive to new users.
- Note, we could have iterated over all
# df with one row for each unique patient in original dataset
_patients = combine(groupby(adeval, :id), first)
# iterate over _patients creating 1 subject per row
pop02 = map(eachrow(_patients)) do r
Subject(
id = r.id[1],
events = DosageRegimen(0.75 * r.wtbl[1]),
covariates = (; wtbl = r.wtbl[1]),
)
end
sim02 = simobs(
mdl,
pop02,
coef(myfit),
empirical_bayes(myfit);
obstimes = stimes,
simulate_error = false,
)Simulated population (Vector{<:Subject})
Simulated subjects: 32
Simulated variables: conc, pca
- A bit of additional post-processing
- The figure below shows individual warfarin CT profiles for all subjects.
@chain DataFrame(sim02) begin
data(_) *
mapping(
:time => "Time After Dose, hours",
:conc => "Warfarin Concentration, mg/L",
group = :id => nonnumeric,
) *
visual(Scatter)
draw(
_;
axis = (;
title = "Individual Concentration-Time Profiles",
subtitle = "0.75 mg/kg x1",
),
)
end- Individual CT profiles can be created by stratifying the data using the
layoutkwarg inmapping, and then separated using thepaginatefunction. x|yticklabelsizewas adjusted to improve readability along those axes.
# plot layers
_plt = @chain DataFrame(sim02) begin
data(_) *
mapping(
:time => "Time After Dose, hours",
:conc => "Warfarin Concentration, mg/L",
group = :id => nonnumeric,
layout = :id => nonnumeric,
) *
visual(Scatter)
end
# draw(paginate(...)) returns a vector of `FigureGrid` objects
_pgrid = draw(
paginate(_plt, layout = 16);
figure = (;
size = (6.5, 6.5) .* 96,
title = "Individual Concentration-Time Profiles",
subtitle = "0.75 mg/kg x1",
),
axis = (; xticks = 0:24:144, xticklabelsize = 12, yticklabelsize = 12),
)2-element Vector{AlgebraOfGraphics.FigureGrid}:
FigureGrid()
FigureGrid()
The result is a Vector{FigureGrid} with figures that can be accessed via indexing. The first 16 subjects are shown in the panel below.
_pgrid[1]4.3 Scenario 3
In this scenario we assess the impact of augmented clearance on target attainment after a one-time LD of 1.5 mg/kg PO.
- We use this scenario to showcase creating a
Subjectfrom scratch along with thezero_randeffshelper function.
- We use this scenario to showcase creating a
These last two scenarios should reinforce why Julia fundamentals are so important and why they were chosen for Module 1. We encourage the reader to revisit that tutorial if any of the code that follows is unclear.
# final parameter estimates
_params = coef(myfit)
sim03 = map([0.8, 1, 1.2]) do i
simobs(
mdl,
Subject(
id = "CL: $i",
events = DosageRegimen(1.5 * 70),
covariates = (; wtbl = 70),
),
merge(_params, (; tvcl = _params.tvcl * i)),
zero_randeffs(mdl, _params);
obstimes = 0.5:0.5:144,
simulate_error = false,
)
endSimulated population (Vector{<:Subject})
Simulated subjects: 3
Simulated variables: conc, pca
- Visualize PK profile
@chain DataFrame(sim03) begin
data(_) *
mapping(
:time => "Time After Dose, hours",
:conc => "Warfarin Concentration, mg/L",
group = :id => nonnumeric,
color = :id => "Scenario",
) *
visual(Lines)
draw(
_;
axis = (;
title = "Population Concentration-Time Profiles with Augmented CL",
subtitle = "1.5 mg/kg x1",
),
)
end- Visual PD profile
- More complex figures in AoG can be easier to manage if their respective layers are stored in separate variables.
# band for therapeutic range
tr_layer = mapping(0:144, 20, 35) * visual(Band; color = (:blue, 0.2))
# profiles
profiles =
data(DataFrame(sim03)) *
mapping(
:time => "Time After Dose, hours",
:pca => "PCA, % of Normal",
group = :id => nonnumeric,
color = :id => "Scenario",
) *
visual(Lines)
draw(
tr_layer + profiles;
axis = (;
title = "Population Concentration-Time Profiles with Augmented CL",
subtitle = "1.5 mg/kg x1",
),
)4.4 Scenario 4
In this scenario we combine the concepts discussed above to evaluate three alternative dosage regimens: 5, 10, or 15 mg PO daily for 14 days.
- The estimated population half-life for warfarin per our model is ~41 hours which means it should take roughly 9 days (on average) to achieve steady-state; we extend this to 14 days to ensure each of our virtual subjects is at SS prior to evaluation.
We will generate a
Populationof 100Subjects and use it simulate a total of 600 trials (200 per dosage regimen).- We will not include RUV, since most variability comes from BSV and RUV can make results difficult to interpret.
We are interested in three metrics.
- The probability of obtaining a
pcawithin the therapeutic range (20-35%) at any time during treatment. - The time needed to reach the first therapeutic
pcavalue. - The total time spent in the TR as a percentage of the dosing interval (i.e., 24 hours) at SS (Day 14).
- The probability of obtaining a
4.4.1 Setup
We begin, as before, by developing the code for a single simulation that we can then reuse for the remaining dosage regimens. While working through the setup, we will keep our code simple by limiting our “population” and replicates to 5. We will also focus on one dosage regimen, 5 mg PO daily for 14 days. This will allow us to spot check our code and the results to ensure the output it what we expect instead of trying to troubleshoot for the full population and profile. In order, we must:
- Create a population of subjects that has a single covariate (
wtbl) that is sampled from a uniform distribution of observed values (40-102 kg). - Simulate an appropriate number of observations (hourly observations will be sufficient).
- Repeat the simulation in #2 for a total of 5 simulations.
- Store the output in a format that will make post-processing and evaluation as easy as possible.
- Process and evaluate the result then present our findings in a meaningful way.
4.4.1.1 Population
- We can combine
mapwith aRangebetween1:nand ado-block to create a vector of virtual subjects (i.e., aPopulation) - For simplicity, we will also use scalar literal values for the range of
wtblin theUniformcall instead of obtaining them programmatically withextremaor some other function.
pop03 = map(1:5) do i
_wtbl = rand(Uniform(40, 120))
Subject(
id = i,
events = DosageRegimen(5; ii = 24, addl = 13),
covariates = (; wtbl = _wtbl),
)
endPopulation
Subjects: 5
Covariates: wtbl
Observations:
4.4.1.2 Simulation
- Simulating observations for 2 subjects is comparatively simple, and we can repeat that simulation by mapping over a range
1:nas we did when creatingpop03. - The resulting vector of
SimulatedObservationobjects can be concatenated into a single object using thereduce(vcat, myvectorofsims), then converted into a data frame for post-processing. - Since we need to summarize values from each simulation, we will need to include a variable to track the iteration number for each simulation. We can do this by leveraging the mutating
Subjectsyntax to add arep_idas a covariate for each subjectpop03inside themapbefore we callsimobs.
goodsim = map(1:5) do i
# rebuild pop03 using mutating Subject to add rep_id
_pop = map(pop03) do s
Subject(s; covariates = (; rep_id = i))
end
# simulate values for _pop
simobs(mdl, _pop, coef(myfit); obstimes = 0:1:(24*14), simulate_error = false)
end5-element Vector{Vector{Pumas.SimulatedObservations{PumasModel{(tvcl = 1, tvvc = 1, tvka = 1, tvalag = 1, tve0 = 1, tvimax = 1, tvic50 = 1, tvturn = 1, Ωpk = 3, Ωpd = 2, σprop_pk = 1, σadd_pk = 1, σadd_pd = 1), 5, (:depot, :central, :e), (:cl, :vc, :ka, :e0, :imax, :ic50, :turn, :kout, :kin), ParamSet{@NamedTuple{tvcl::RealDomain{Float64, TransformVariables.Infinity{true}, Float64}, tvvc::RealDomain{Float64, TransformVariables.Infinity{true}, Float64}, tvka::RealDomain{Float64, TransformVariables.Infinity{true}, Float64}, tvalag::RealDomain{Float64, TransformVariables.Infinity{true}, Float64}, tve0::RealDomain{Float64, Int64, Int64}, tvimax::RealDomain{Float64, Int64, Float64}, tvic50::RealDomain{Float64, TransformVariables.Infinity{true}, Float64}, tvturn::RealDomain{Float64, TransformVariables.Infinity{true}, Float64}, Ωpk::PDiagDomain{PDMats.PDiagMat{Float64, Vector{Float64}}}, Ωpd::PDiagDomain{PDMats.PDiagMat{Float64, Vector{Float64}}}, σprop_pk::RealDomain{Float64, TransformVariables.Infinity{true}, Float64}, σadd_pk::RealDomain{Float64, TransformVariables.Infinity{true}, Float64}, σadd_pd::RealDomain{Float64, TransformVariables.Infinity{true}, Int64}}}, Pumas.RandomObj{(), var"#1#12"}, Pumas.TimeDispatcher{var"#2#13", var"#3#14"}, Pumas.DCPChecker{Pumas.TimeDispatcher{var"#5#16", var"#6#17"}}, var"#7#18", SciMLBase.ODEProblem{Nothing, Tuple{Nothing, Nothing}, false, Nothing, SciMLBase.ODEFunction{false, SciMLBase.FullSpecialize, ModelingToolkit.GeneratedFunctionWrapper{(2, 3, false), var"#8#19", var"#9#20"}, LinearAlgebra.UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, ModelingToolkit.ODESystem, Nothing, Nothing}, Base.Pairs{Symbol, Union{}, Tuple{}, @NamedTuple{}}, SciMLBase.StandardODEProblem}, Pumas.DerivedObj{(:conc, :pca), var"#10#21"}, var"#11#22", ModelingToolkit.ODESystem, Pumas.PumasModelOptions}, Subject{@NamedTuple{}, Pumas.ConstantInterpolationStructArray{Vector{Float64}, @NamedTuple{wtbl::Vector{Float64}, rep_id::Vector{Int64}}}, DosageRegimen{Float64, Symbol, Float64, Float64, Float64, Float64}, Nothing}, StepRange{Int64, Int64}, @NamedTuple{tvcl::Float64, tvvc::Float64, tvka::Float64, tvalag::Float64, tve0::Float64, tvimax::Float64, tvic50::Float64, tvturn::Float64, Ωpk::PDMats.PDiagMat{Float64, Vector{Float64}}, Ωpd::PDMats.PDiagMat{Float64, Vector{Float64}}, σprop_pk::Float64, σadd_pk::Float64, σadd_pd::Float64}, @NamedTuple{ηpk::Vector{Float64}, ηpd::Vector{Float64}}, @NamedTuple{wtbl::Vector{Float64}, rep_id::Vector{Int64}}, @NamedTuple{saveat::StepRange{Int64, Int64}, ss_abstol::Float64, ss_reltol::Float64, ss_maxiters::Int64, abstol::Float64, reltol::Float64, alg::CompositeAlgorithm{0, Tuple{Vern7{typeof(OrdinaryDiffEqCore.trivial_limiter!), typeof(OrdinaryDiffEqCore.trivial_limiter!), Static.False}, Rodas5P{1, ADTypes.AutoForwardDiff{1, Nothing}, LinearSolve.GenericLUFactorization{LinearAlgebra.RowMaximum}, typeof(OrdinaryDiffEqCore.DEFAULT_PRECS), Val{:forward}(), true, nothing, typeof(OrdinaryDiffEqCore.trivial_limiter!), typeof(OrdinaryDiffEqCore.trivial_limiter!)}}, OrdinaryDiffEqCore.AutoSwitch{Vern7{typeof(OrdinaryDiffEqCore.trivial_limiter!), typeof(OrdinaryDiffEqCore.trivial_limiter!), Static.False}, Rodas5P{1, ADTypes.AutoForwardDiff{1, Nothing}, LinearSolve.GenericLUFactorization{LinearAlgebra.RowMaximum}, typeof(OrdinaryDiffEqCore.DEFAULT_PRECS), Val{:forward}(), true, nothing, typeof(OrdinaryDiffEqCore.trivial_limiter!), typeof(OrdinaryDiffEqCore.trivial_limiter!)}, Rational{Int64}, Int64}}, continuity::Symbol}, SciMLBase.ODESolution{Float64, 2, Vector{StaticArraysCore.SVector{3, Float64}}, Nothing, Nothing, Vector{Float64}, Vector{Vector{StaticArraysCore.SVector{3, Float64}}}, Nothing, Any, Any, Any, SciMLBase.DEStats, Vector{Int64}, Nothing, Nothing, Nothing}, @NamedTuple{lags::Vector{@NamedTuple{depot::Float64}}}, @NamedTuple{cl::Vector{Float64}, vc::Vector{Float64}, ka::Vector{Float64}, e0::Vector{Float64}, imax::Vector{Float64}, ic50::Vector{Float64}, turn::Vector{Float64}, kout::Vector{Float64}, kin::Vector{Float64}}, @NamedTuple{conc::Vector{Float64}, pca::Vector{Float64}}, @NamedTuple{}}}}:
Simulated population (Vector{<:Subject}), n = 5, variables: conc, pca
Simulated population (Vector{<:Subject}), n = 5, variables: conc, pca
Simulated population (Vector{<:Subject}), n = 5, variables: conc, pca
Simulated population (Vector{<:Subject}), n = 5, variables: conc, pca
Simulated population (Vector{<:Subject}), n = 5, variables: conc, pca
- We used the label
goodsimsbecause this approach, while valid, is redundant because we are recreating thePopulationfrom scratch with each simulation. - We could simplify the code by using a nested
mapcall to create the population during each iteration.
bettersim = map(1:5) do i
_pop = map(1:5) do s
Subject(
id = s,
events = DosageRegimen(5, ii = 24, addl = 13),
covariates = (; wtbl = rand(Uniform(40, 102)), rep_id = i),
)
end
simobs(mdl, _pop, coef(myfit); obstimes = 0:1:(24*14), simulate_error = false)
end5-element Vector{Vector{Pumas.SimulatedObservations{PumasModel{(tvcl = 1, tvvc = 1, tvka = 1, tvalag = 1, tve0 = 1, tvimax = 1, tvic50 = 1, tvturn = 1, Ωpk = 3, Ωpd = 2, σprop_pk = 1, σadd_pk = 1, σadd_pd = 1), 5, (:depot, :central, :e), (:cl, :vc, :ka, :e0, :imax, :ic50, :turn, :kout, :kin), ParamSet{@NamedTuple{tvcl::RealDomain{Float64, TransformVariables.Infinity{true}, Float64}, tvvc::RealDomain{Float64, TransformVariables.Infinity{true}, Float64}, tvka::RealDomain{Float64, TransformVariables.Infinity{true}, Float64}, tvalag::RealDomain{Float64, TransformVariables.Infinity{true}, Float64}, tve0::RealDomain{Float64, Int64, Int64}, tvimax::RealDomain{Float64, Int64, Float64}, tvic50::RealDomain{Float64, TransformVariables.Infinity{true}, Float64}, tvturn::RealDomain{Float64, TransformVariables.Infinity{true}, Float64}, Ωpk::PDiagDomain{PDMats.PDiagMat{Float64, Vector{Float64}}}, Ωpd::PDiagDomain{PDMats.PDiagMat{Float64, Vector{Float64}}}, σprop_pk::RealDomain{Float64, TransformVariables.Infinity{true}, Float64}, σadd_pk::RealDomain{Float64, TransformVariables.Infinity{true}, Float64}, σadd_pd::RealDomain{Float64, TransformVariables.Infinity{true}, Int64}}}, Pumas.RandomObj{(), var"#1#12"}, Pumas.TimeDispatcher{var"#2#13", var"#3#14"}, Pumas.DCPChecker{Pumas.TimeDispatcher{var"#5#16", var"#6#17"}}, var"#7#18", SciMLBase.ODEProblem{Nothing, Tuple{Nothing, Nothing}, false, Nothing, SciMLBase.ODEFunction{false, SciMLBase.FullSpecialize, ModelingToolkit.GeneratedFunctionWrapper{(2, 3, false), var"#8#19", var"#9#20"}, LinearAlgebra.UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, ModelingToolkit.ODESystem, Nothing, Nothing}, Base.Pairs{Symbol, Union{}, Tuple{}, @NamedTuple{}}, SciMLBase.StandardODEProblem}, Pumas.DerivedObj{(:conc, :pca), var"#10#21"}, var"#11#22", ModelingToolkit.ODESystem, Pumas.PumasModelOptions}, Subject{@NamedTuple{}, Pumas.ConstantCovar{@NamedTuple{wtbl::Float64, rep_id::Int64}}, DosageRegimen{Float64, Symbol, Float64, Float64, Float64, Float64}, Nothing}, StepRange{Int64, Int64}, @NamedTuple{tvcl::Float64, tvvc::Float64, tvka::Float64, tvalag::Float64, tve0::Float64, tvimax::Float64, tvic50::Float64, tvturn::Float64, Ωpk::PDMats.PDiagMat{Float64, Vector{Float64}}, Ωpd::PDMats.PDiagMat{Float64, Vector{Float64}}, σprop_pk::Float64, σadd_pk::Float64, σadd_pd::Float64}, @NamedTuple{ηpk::Vector{Float64}, ηpd::Vector{Float64}}, @NamedTuple{wtbl::Vector{Float64}, rep_id::Vector{Int64}}, @NamedTuple{saveat::StepRange{Int64, Int64}, ss_abstol::Float64, ss_reltol::Float64, ss_maxiters::Int64, abstol::Float64, reltol::Float64, alg::CompositeAlgorithm{0, Tuple{Vern7{typeof(OrdinaryDiffEqCore.trivial_limiter!), typeof(OrdinaryDiffEqCore.trivial_limiter!), Static.False}, Rodas5P{1, ADTypes.AutoForwardDiff{1, Nothing}, LinearSolve.GenericLUFactorization{LinearAlgebra.RowMaximum}, typeof(OrdinaryDiffEqCore.DEFAULT_PRECS), Val{:forward}(), true, nothing, typeof(OrdinaryDiffEqCore.trivial_limiter!), typeof(OrdinaryDiffEqCore.trivial_limiter!)}}, OrdinaryDiffEqCore.AutoSwitch{Vern7{typeof(OrdinaryDiffEqCore.trivial_limiter!), typeof(OrdinaryDiffEqCore.trivial_limiter!), Static.False}, Rodas5P{1, ADTypes.AutoForwardDiff{1, Nothing}, LinearSolve.GenericLUFactorization{LinearAlgebra.RowMaximum}, typeof(OrdinaryDiffEqCore.DEFAULT_PRECS), Val{:forward}(), true, nothing, typeof(OrdinaryDiffEqCore.trivial_limiter!), typeof(OrdinaryDiffEqCore.trivial_limiter!)}, Rational{Int64}, Int64}}, continuity::Symbol}, SciMLBase.ODESolution{Float64, 2, Vector{StaticArraysCore.SVector{3, Float64}}, Nothing, Nothing, Vector{Float64}, Vector{Vector{StaticArraysCore.SVector{3, Float64}}}, Nothing, Any, Any, Any, SciMLBase.DEStats, Vector{Int64}, Nothing, Nothing, Nothing}, @NamedTuple{lags::Vector{@NamedTuple{depot::Float64}}}, @NamedTuple{cl::Vector{Float64}, vc::Vector{Float64}, ka::Vector{Float64}, e0::Vector{Float64}, imax::Vector{Float64}, ic50::Vector{Float64}, turn::Vector{Float64}, kout::Vector{Float64}, kin::Vector{Float64}}, @NamedTuple{conc::Vector{Float64}, pca::Vector{Float64}}, @NamedTuple{}}}}:
Simulated population (Vector{<:Subject}), n = 5, variables: conc, pca
Simulated population (Vector{<:Subject}), n = 5, variables: conc, pca
Simulated population (Vector{<:Subject}), n = 5, variables: conc, pca
Simulated population (Vector{<:Subject}), n = 5, variables: conc, pca
Simulated population (Vector{<:Subject}), n = 5, variables: conc, pca
The
bettersimsyntax provides a reasonable solution for simulating a single dose, now we just need to abstract that code out into a function so that we can apply it to our two remaining doses.We create a function,
simulate_warfarinthat accepts a single positional argument,dosethat we can use along withmap.dosewas also added as a covariate in theSubjectconstructor so that we can use it for stratification during post-processing.- The values for number of subjects (100), and number of samples (200) were hard-coded for simplicity. In a real-world application it would be better to pass those parameters as arguments to
simulate_warfarinto improve its overall utility.
function simulate_warfarin(dose)
#! using literal values for n samples
_sim = map(1:200) do s
# create a population
#! using literal for n subjects
_pop = map(1:100) do p
Subject(
id = p,
#! using literals for dosing frequency and duration
events = DosageRegimen(dose; ii = 24, addl = 13),
#! using literals for wtbl range, adding rep_id and dose as covariates
covariates = (; wtbl = rand(Uniform(40, 102)), rep_id = s, dose),
)
end
# simulation
simobs(
mdl,
_pop,
coef(myfit);
#! using literal for n days in obstimes range
obstimes = 0:1:(24*14),
#! no RUV
simulate_error = false,
)
end
endsimulate_warfarin (generic function with 1 method)
Lastly, we perform the simulations using a
mapreducecall and save the result in a variable,sim03.mapreduceallows us to combine themapandreduce(vcat)steps into a single function call.
sim03 = mapreduce(simulate_warfarin, vcat, [5, 10, 15])600-element Vector{Vector{Pumas.SimulatedObservations{PumasModel{(tvcl = 1, tvvc = 1, tvka = 1, tvalag = 1, tve0 = 1, tvimax = 1, tvic50 = 1, tvturn = 1, Ωpk = 3, Ωpd = 2, σprop_pk = 1, σadd_pk = 1, σadd_pd = 1), 5, (:depot, :central, :e), (:cl, :vc, :ka, :e0, :imax, :ic50, :turn, :kout, :kin), ParamSet{@NamedTuple{tvcl::RealDomain{Float64, TransformVariables.Infinity{true}, Float64}, tvvc::RealDomain{Float64, TransformVariables.Infinity{true}, Float64}, tvka::RealDomain{Float64, TransformVariables.Infinity{true}, Float64}, tvalag::RealDomain{Float64, TransformVariables.Infinity{true}, Float64}, tve0::RealDomain{Float64, Int64, Int64}, tvimax::RealDomain{Float64, Int64, Float64}, tvic50::RealDomain{Float64, TransformVariables.Infinity{true}, Float64}, tvturn::RealDomain{Float64, TransformVariables.Infinity{true}, Float64}, Ωpk::PDiagDomain{PDMats.PDiagMat{Float64, Vector{Float64}}}, Ωpd::PDiagDomain{PDMats.PDiagMat{Float64, Vector{Float64}}}, σprop_pk::RealDomain{Float64, TransformVariables.Infinity{true}, Float64}, σadd_pk::RealDomain{Float64, TransformVariables.Infinity{true}, Float64}, σadd_pd::RealDomain{Float64, TransformVariables.Infinity{true}, Int64}}}, Pumas.RandomObj{(), var"#1#12"}, Pumas.TimeDispatcher{var"#2#13", var"#3#14"}, Pumas.DCPChecker{Pumas.TimeDispatcher{var"#5#16", var"#6#17"}}, var"#7#18", SciMLBase.ODEProblem{Nothing, Tuple{Nothing, Nothing}, false, Nothing, SciMLBase.ODEFunction{false, SciMLBase.FullSpecialize, ModelingToolkit.GeneratedFunctionWrapper{(2, 3, false), var"#8#19", var"#9#20"}, LinearAlgebra.UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, ModelingToolkit.ODESystem, Nothing, Nothing}, Base.Pairs{Symbol, Union{}, Tuple{}, @NamedTuple{}}, SciMLBase.StandardODEProblem}, Pumas.DerivedObj{(:conc, :pca), var"#10#21"}, var"#11#22", ModelingToolkit.ODESystem, Pumas.PumasModelOptions}, Subject{@NamedTuple{}, Pumas.ConstantCovar{@NamedTuple{wtbl::Float64, rep_id::Int64, dose::Int64}}, DosageRegimen{Float64, Symbol, Float64, Float64, Float64, Float64}, Nothing}, StepRange{Int64, Int64}, @NamedTuple{tvcl::Float64, tvvc::Float64, tvka::Float64, tvalag::Float64, tve0::Float64, tvimax::Float64, tvic50::Float64, tvturn::Float64, Ωpk::PDMats.PDiagMat{Float64, Vector{Float64}}, Ωpd::PDMats.PDiagMat{Float64, Vector{Float64}}, σprop_pk::Float64, σadd_pk::Float64, σadd_pd::Float64}, @NamedTuple{ηpk::Vector{Float64}, ηpd::Vector{Float64}}, @NamedTuple{wtbl::Vector{Float64}, rep_id::Vector{Int64}, dose::Vector{Int64}}, @NamedTuple{saveat::StepRange{Int64, Int64}, ss_abstol::Float64, ss_reltol::Float64, ss_maxiters::Int64, abstol::Float64, reltol::Float64, alg::CompositeAlgorithm{0, Tuple{Vern7{typeof(OrdinaryDiffEqCore.trivial_limiter!), typeof(OrdinaryDiffEqCore.trivial_limiter!), Static.False}, Rodas5P{1, ADTypes.AutoForwardDiff{1, Nothing}, LinearSolve.GenericLUFactorization{LinearAlgebra.RowMaximum}, typeof(OrdinaryDiffEqCore.DEFAULT_PRECS), Val{:forward}(), true, nothing, typeof(OrdinaryDiffEqCore.trivial_limiter!), typeof(OrdinaryDiffEqCore.trivial_limiter!)}}, OrdinaryDiffEqCore.AutoSwitch{Vern7{typeof(OrdinaryDiffEqCore.trivial_limiter!), typeof(OrdinaryDiffEqCore.trivial_limiter!), Static.False}, Rodas5P{1, ADTypes.AutoForwardDiff{1, Nothing}, LinearSolve.GenericLUFactorization{LinearAlgebra.RowMaximum}, typeof(OrdinaryDiffEqCore.DEFAULT_PRECS), Val{:forward}(), true, nothing, typeof(OrdinaryDiffEqCore.trivial_limiter!), typeof(OrdinaryDiffEqCore.trivial_limiter!)}, Rational{Int64}, Int64}}, continuity::Symbol}, SciMLBase.ODESolution{Float64, 2, Vector{StaticArraysCore.SVector{3, Float64}}, Nothing, Nothing, Vector{Float64}, Vector{Vector{StaticArraysCore.SVector{3, Float64}}}, Nothing, Any, Any, Any, SciMLBase.DEStats, Vector{Int64}, Nothing, Nothing, Nothing}, @NamedTuple{lags::Vector{@NamedTuple{depot::Float64}}}, @NamedTuple{cl::Vector{Float64}, vc::Vector{Float64}, ka::Vector{Float64}, e0::Vector{Float64}, imax::Vector{Float64}, ic50::Vector{Float64}, turn::Vector{Float64}, kout::Vector{Float64}, kin::Vector{Float64}}, @NamedTuple{conc::Vector{Float64}, pca::Vector{Float64}}, @NamedTuple{}}}}:
Simulated population (Vector{<:Subject}), n = 100, variables: conc, pca
Simulated population (Vector{<:Subject}), n = 100, variables: conc, pca
Simulated population (Vector{<:Subject}), n = 100, variables: conc, pca
Simulated population (Vector{<:Subject}), n = 100, variables: conc, pca
Simulated population (Vector{<:Subject}), n = 100, variables: conc, pca
Simulated population (Vector{<:Subject}), n = 100, variables: conc, pca
Simulated population (Vector{<:Subject}), n = 100, variables: conc, pca
Simulated population (Vector{<:Subject}), n = 100, variables: conc, pca
Simulated population (Vector{<:Subject}), n = 100, variables: conc, pca
Simulated population (Vector{<:Subject}), n = 100, variables: conc, pca
⋮
Simulated population (Vector{<:Subject}), n = 100, variables: conc, pca
Simulated population (Vector{<:Subject}), n = 100, variables: conc, pca
Simulated population (Vector{<:Subject}), n = 100, variables: conc, pca
Simulated population (Vector{<:Subject}), n = 100, variables: conc, pca
Simulated population (Vector{<:Subject}), n = 100, variables: conc, pca
Simulated population (Vector{<:Subject}), n = 100, variables: conc, pca
Simulated population (Vector{<:Subject}), n = 100, variables: conc, pca
Simulated population (Vector{<:Subject}), n = 100, variables: conc, pca
Simulated population (Vector{<:Subject}), n = 100, variables: conc, pca
4.4.1.3 Post-processing
- The starting point for post-processing will depend on the output needed to answer the question of interest; in this case a simple tabular summary of metrics with 95% CIs and a graphical summary of 90% PIs for each regimen will suffice.
- We will start from a data frame (
sim03df)
#! takes ~3-5min on 16vCPU
sim03df = DataFrame(reduce(vcat, (sim03)))| Row | id | time | conc | pca | evid | lags_depot | amt | cmt | rate | duration | ss | ii | route | wtbl | rep_id | dose | tad | dosenum | depot | central | e | cl | vc | ka | e0 | imax | ic50 | turn | kout | kin | ηpk_1 | ηpk_2 | ηpk_3 | ηpd_1 | ηpd_2 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| String | Float64 | Float64? | Float64? | Int64 | Float64? | Float64? | Symbol? | Float64? | Float64? | Int8? | Float64? | NCA.Route? | Float64? | Int64? | Int64? | Float64 | Int64 | Float64? | Float64? | Float64? | Float64? | Float64? | Float64? | Float64? | Float64? | Float64? | Float64? | Float64? | Float64? | Float64 | Float64 | Float64 | Float64 | Float64 | |
| 1 | 1 | 0.0 | missing | missing | 1 | 0.873414 | 5.0 | depot | 0.0 | 0.0 | 0 | 0.0 | NullRoute | 93.0704 | 1 | 5 | 0.0 | 1 | 0.0 | 0.0 | 98.8862 | 0.178623 | 10.195 | 0.778484 | 98.8862 | 1.0 | 1.03506 | 18.8281 | 0.0531121 | 5.25206 | 0.0625663 | -0.0405094 | -0.411026 | 0.02323 | -0.125685 |
| 2 | 1 | 0.0 | 0.0 | 98.8862 | 0 | missing | 0.0 | missing | 0.0 | 0.0 | 0 | 0.0 | missing | 93.0704 | 1 | 5 | 0.0 | 1 | 0.0 | 0.0 | 98.8862 | 0.178623 | 10.195 | 0.778484 | 98.8862 | 1.0 | 1.03506 | 18.8281 | 0.0531121 | 5.25206 | 0.0625663 | -0.0405094 | -0.411026 | 0.02323 | -0.125685 |
| 3 | 1 | 1.0 | 0.0459731 | 98.8716 | 0 | missing | 0.0 | missing | 0.0 | 0.0 | 0 | 0.0 | missing | 93.0704 | 1 | 5 | 1.0 | 1 | 4.53077 | 0.468697 | 98.8716 | 0.178623 | 10.195 | 0.778484 | 98.8862 | 1.0 | 1.03506 | 18.8281 | 0.0531121 | 5.25206 | 0.0625663 | -0.0405094 | -0.411026 | 0.02323 | -0.125685 |
| 4 | 1 | 2.0 | 0.283193 | 98.1235 | 0 | missing | 0.0 | missing | 0.0 | 0.0 | 0 | 0.0 | missing | 93.0704 | 1 | 5 | 2.0 | 1 | 2.08009 | 2.88717 | 98.1235 | 0.178623 | 10.195 | 0.778484 | 98.8862 | 1.0 | 1.03506 | 18.8281 | 0.0531121 | 5.25206 | 0.0625663 | -0.0405094 | -0.411026 | 0.02323 | -0.125685 |
| 5 | 1 | 3.0 | 0.38755 | 96.8915 | 0 | missing | 0.0 | missing | 0.0 | 0.0 | 0 | 0.0 | missing | 93.0704 | 1 | 5 | 3.0 | 1 | 0.95497 | 3.95109 | 96.8915 | 0.178623 | 10.195 | 0.778484 | 98.8862 | 1.0 | 1.03506 | 18.8281 | 0.0531121 | 5.25206 | 0.0625663 | -0.0405094 | -0.411026 | 0.02323 | -0.125685 |
| 6 | 1 | 4.0 | 0.430987 | 95.5367 | 0 | missing | 0.0 | missing | 0.0 | 0.0 | 0 | 0.0 | missing | 93.0704 | 1 | 5 | 4.0 | 1 | 0.438428 | 4.39393 | 95.5367 | 0.178623 | 10.195 | 0.778484 | 98.8862 | 1.0 | 1.03506 | 18.8281 | 0.0531121 | 5.25206 | 0.0625663 | -0.0405094 | -0.411026 | 0.02323 | -0.125685 |
| 7 | 1 | 5.0 | 0.446534 | 94.1834 | 0 | missing | 0.0 | missing | 0.0 | 0.0 | 0 | 0.0 | missing | 93.0704 | 1 | 5 | 5.0 | 1 | 0.201283 | 4.55243 | 94.1834 | 0.178623 | 10.195 | 0.778484 | 98.8862 | 1.0 | 1.03506 | 18.8281 | 0.0531121 | 5.25206 | 0.0625663 | -0.0405094 | -0.411026 | 0.02323 | -0.125685 |
| 8 | 1 | 6.0 | 0.449353 | 92.8799 | 0 | missing | 0.0 | missing | 0.0 | 0.0 | 0 | 0.0 | missing | 93.0704 | 1 | 5 | 6.0 | 1 | 0.0924094 | 4.58117 | 92.8799 | 0.178623 | 10.195 | 0.778484 | 98.8862 | 1.0 | 1.03506 | 18.8281 | 0.0531121 | 5.25206 | 0.0625663 | -0.0405094 | -0.411026 | 0.02323 | -0.125685 |
| 9 | 1 | 7.0 | 0.446403 | 91.6451 | 0 | missing | 0.0 | missing | 0.0 | 0.0 | 0 | 0.0 | missing | 93.0704 | 1 | 5 | 7.0 | 1 | 0.0424253 | 4.5511 | 91.6451 | 0.178623 | 10.195 | 0.778484 | 98.8862 | 1.0 | 1.03506 | 18.8281 | 0.0531121 | 5.25206 | 0.0625663 | -0.0405094 | -0.411026 | 0.02323 | -0.125685 |
| 10 | 1 | 8.0 | 0.440879 | 90.4847 | 0 | missing | 0.0 | missing | 0.0 | 0.0 | 0 | 0.0 | missing | 93.0704 | 1 | 5 | 8.0 | 1 | 0.0194775 | 4.49478 | 90.4847 | 0.178623 | 10.195 | 0.778484 | 98.8862 | 1.0 | 1.03506 | 18.8281 | 0.0531121 | 5.25206 | 0.0625663 | -0.0405094 | -0.411026 | 0.02323 | -0.125685 |
| 11 | 1 | 9.0 | 0.434245 | 89.3994 | 0 | missing | 0.0 | missing | 0.0 | 0.0 | 0 | 0.0 | missing | 93.0704 | 1 | 5 | 9.0 | 1 | 0.00894216 | 4.42714 | 89.3994 | 0.178623 | 10.195 | 0.778484 | 98.8862 | 1.0 | 1.03506 | 18.8281 | 0.0531121 | 5.25206 | 0.0625663 | -0.0405094 | -0.411026 | 0.02323 | -0.125685 |
| 12 | 1 | 10.0 | 0.427173 | 88.3871 | 0 | missing | 0.0 | missing | 0.0 | 0.0 | 0 | 0.0 | missing | 93.0704 | 1 | 5 | 10.0 | 1 | 0.00410536 | 4.35504 | 88.3871 | 0.178623 | 10.195 | 0.778484 | 98.8862 | 1.0 | 1.03506 | 18.8281 | 0.0531121 | 5.25206 | 0.0625663 | -0.0405094 | -0.411026 | 0.02323 | -0.125685 |
| 13 | 1 | 11.0 | 0.419969 | 87.445 | 0 | missing | 0.0 | missing | 0.0 | 0.0 | 0 | 0.0 | missing | 93.0704 | 1 | 5 | 11.0 | 1 | 0.00188478 | 4.2816 | 87.445 | 0.178623 | 10.195 | 0.778484 | 98.8862 | 1.0 | 1.03506 | 18.8281 | 0.0531121 | 5.25206 | 0.0625663 | -0.0405094 | -0.411026 | 0.02323 | -0.125685 |
| ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
| 21059989 | 100 | 325.0 | 4.16693 | 29.0372 | 0 | missing | 0.0 | missing | 0.0 | 0.0 | 0 | 0.0 | missing | 64.3371 | 200 | 15 | 13.0 | 14 | 7.98157e-12 | 32.3599 | 29.0372 | 0.149306 | 7.76589 | 2.33055 | 97.0326 | 1.0 | 1.80592 | 18.8281 | 0.0531121 | 5.15361 | 0.160206 | 0.0565492 | 0.685484 | 0.00430778 | 0.430925 |
| 21059990 | 100 | 326.0 | 4.08758 | 29.0631 | 0 | missing | 0.0 | missing | 0.0 | 0.0 | 0 | 0.0 | missing | 64.3371 | 200 | 15 | 14.0 | 14 | 7.7542e-13 | 31.7437 | 29.0631 | 0.149306 | 7.76589 | 2.33055 | 97.0326 | 1.0 | 1.80592 | 18.8281 | 0.0531121 | 5.15361 | 0.160206 | 0.0565492 | 0.685484 | 0.00430778 | 0.430925 |
| 21059991 | 100 | 327.0 | 4.00974 | 29.1081 | 0 | missing | 0.0 | missing | 0.0 | 0.0 | 0 | 0.0 | missing | 64.3371 | 200 | 15 | 15.0 | 14 | 7.3914e-14 | 31.1392 | 29.1081 | 0.149306 | 7.76589 | 2.33055 | 97.0326 | 1.0 | 1.80592 | 18.8281 | 0.0531121 | 5.15361 | 0.160206 | 0.0565492 | 0.685484 | 0.00430778 | 0.430925 |
| 21059992 | 100 | 328.0 | 3.93339 | 29.1715 | 0 | missing | 0.0 | missing | 0.0 | 0.0 | 0 | 0.0 | missing | 64.3371 | 200 | 15 | 16.0 | 14 | 6.95956e-15 | 30.5463 | 29.1715 | 0.149306 | 7.76589 | 2.33055 | 97.0326 | 1.0 | 1.80592 | 18.8281 | 0.0531121 | 5.15361 | 0.160206 | 0.0565492 | 0.685484 | 0.00430778 | 0.430925 |
| 21059993 | 100 | 329.0 | 3.85849 | 29.2524 | 0 | missing | 0.0 | missing | 0.0 | 0.0 | 0 | 0.0 | missing | 64.3371 | 200 | 15 | 17.0 | 14 | 3.76274e-16 | 29.9646 | 29.2524 | 0.149306 | 7.76589 | 2.33055 | 97.0326 | 1.0 | 1.80592 | 18.8281 | 0.0531121 | 5.15361 | 0.160206 | 0.0565492 | 0.685484 | 0.00430778 | 0.430925 |
| 21059994 | 100 | 330.0 | 3.78501 | 29.3501 | 0 | missing | 0.0 | missing | 0.0 | 0.0 | 0 | 0.0 | missing | 64.3371 | 200 | 15 | 18.0 | 14 | -1.18625e-16 | 29.394 | 29.3501 | 0.149306 | 7.76589 | 2.33055 | 97.0326 | 1.0 | 1.80592 | 18.8281 | 0.0531121 | 5.15361 | 0.160206 | 0.0565492 | 0.685484 | 0.00430778 | 0.430925 |
| 21059995 | 100 | 331.0 | 3.71294 | 29.4638 | 0 | missing | 0.0 | missing | 0.0 | 0.0 | 0 | 0.0 | missing | 64.3371 | 200 | 15 | 19.0 | 14 | 1.55074e-16 | 28.8343 | 29.4638 | 0.149306 | 7.76589 | 2.33055 | 97.0326 | 1.0 | 1.80592 | 18.8281 | 0.0531121 | 5.15361 | 0.160206 | 0.0565492 | 0.685484 | 0.00430778 | 0.430925 |
| 21059996 | 100 | 332.0 | 3.64224 | 29.5929 | 0 | missing | 0.0 | missing | 0.0 | 0.0 | 0 | 0.0 | missing | 64.3371 | 200 | 15 | 20.0 | 14 | -1.16109e-17 | 28.2852 | 29.5929 | 0.149306 | 7.76589 | 2.33055 | 97.0326 | 1.0 | 1.80592 | 18.8281 | 0.0531121 | 5.15361 | 0.160206 | 0.0565492 | 0.685484 | 0.00430778 | 0.430925 |
| 21059997 | 100 | 333.0 | 3.57288 | 29.7367 | 0 | missing | 0.0 | missing | 0.0 | 0.0 | 0 | 0.0 | missing | 64.3371 | 200 | 15 | 21.0 | 14 | -2.40852e-15 | 27.7466 | 29.7367 | 0.149306 | 7.76589 | 2.33055 | 97.0326 | 1.0 | 1.80592 | 18.8281 | 0.0531121 | 5.15361 | 0.160206 | 0.0565492 | 0.685484 | 0.00430778 | 0.430925 |
| 21059998 | 100 | 334.0 | 3.50484 | 29.8946 | 0 | missing | 0.0 | missing | 0.0 | 0.0 | 0 | 0.0 | missing | 64.3371 | 200 | 15 | 22.0 | 14 | -1.41987e-15 | 27.2182 | 29.8946 | 0.149306 | 7.76589 | 2.33055 | 97.0326 | 1.0 | 1.80592 | 18.8281 | 0.0531121 | 5.15361 | 0.160206 | 0.0565492 | 0.685484 | 0.00430778 | 0.430925 |
| 21059999 | 100 | 335.0 | 3.4381 | 30.0659 | 0 | missing | 0.0 | missing | 0.0 | 0.0 | 0 | 0.0 | missing | 64.3371 | 200 | 15 | 23.0 | 14 | 1.82787e-16 | 26.6999 | 30.0659 | 0.149306 | 7.76589 | 2.33055 | 97.0326 | 1.0 | 1.80592 | 18.8281 | 0.0531121 | 5.15361 | 0.160206 | 0.0565492 | 0.685484 | 0.00430778 | 0.430925 |
| 21060000 | 100 | 336.0 | 3.37263 | 30.2502 | 0 | missing | 0.0 | missing | 0.0 | 0.0 | 0 | 0.0 | missing | 64.3371 | 200 | 15 | 24.0 | 14 | 2.53727e-16 | 26.1915 | 30.2502 | 0.149306 | 7.76589 | 2.33055 | 97.0326 | 1.0 | 1.80592 | 18.8281 | 0.0531121 | 5.15361 | 0.160206 | 0.0565492 | 0.685484 | 0.00430778 | 0.430925 |
We can quickly check the observation-time profile(s) for a single subject to limit the risk of down-stream errors as we continue our analysis. The profile in the figure below appears reasonable.
@chain sim03df begin
filter(df -> df.id == "1" && df.rep_id == 1, _)
filter(df -> df.evid == 0, _)
select(:time, :conc, :pca)
# default col names for stack are variable and value
stack(Not([:time]))
data(_) * mapping(:time, :value, row = :variable) * visual(Lines)
draw(_; facet = (; linkyaxes = false))
end- Our tabular summary will include three metrics of interest (TA, TTA, TTR) which will be evaluated for each subject, in each simulation.
- We will take the average for each metric per simulation and then report the relevant percentiles (2.5, 50, 97.5).
- Since there is effectively one assessment per subject, we can make use of the split-apply-combine design for data frames.
- The
war_metricsfunction is a custom analysis fortable_one; see the SummaryTables.jl documentation for details.
# custom analysis function for table_one
function war_metrics(col)
all(ismissing, col) && return ("-" => "Median", "-" => "95% CI")
(
median(col) => "Median",
Concat("[", quantile(col, 0.025), ", ", quantile(col, 0.975), "]") => "95% CI",
)
end
@chain sim03df begin
# drop records where pca is missing
dropmissing(_, :pca)
# first combine step evaluates metrics for individual subjects
combine(groupby(_, [:dose, :rep_id, :id])) do gdf
#! metrics 1 and 2
# find index of first pca value in TR; returns index or nothing
i = findfirst(x -> 20 ≤ x < 35, gdf.pca)
# if `i` was found, return 1 (true), else 0 (false)
ta_i = Int(!isnothing(i))
# if no index was found, return missing, else return corresponding time
tta_i = isnothing(i) ? missing : gdf.time[i]
#! metric 3
# temporary df of SS obs from start of Day 14 (312 hours) that are in TR
_ssdf = filter(df -> df.time >= 312 && 20 ≤ df.pca < 35, gdf)
# if no obs found, return missing, else return TTR as percentage of ii
ttr_i =
iszero(nrow(_ssdf)) ? missing :
((last(_ssdf.time) - first(_ssdf.time)) / 24) * 100
# return a named tuple of the 3 metrics for each subject
return (; ta_i, tta_i, ttr_i)
end
# second combine summarizes each metric per simulation (rep_id)
combine(
groupby(_, [:dose, :rep_id]),
# mean(0|1) * 100 = TA percentage
:ta_i => (x -> mean(x) * 100) => :ta,
# applies anonymous function to tta_i and ttr_i cols
# possible all values could be missing, else could have just used `mean`
[:tta_i, :ttr_i] .=> function (c)
all(ismissing, c) && return missing
mean(skipmissing(c))
end .=> [:tta, :ttr],
)
# from SummaryTables.jl
table_one(
_,
[
:ta => war_metrics => "Probability of TA",
:tta => war_metrics => "Time to Target",
:ttr => war_metrics => "Time in TR",
],
sort = false,
groupby = :dose => "Dose, mg",
show_total = false,
)
end| Dose, mg | |||
| 5 | 10 | 15 | |
| Probability of TA | |||
| Median | 30 | 78 | 94 |
| 95% CI | [23, 39] | [70, 86] | [89, 98] |
| Time to Target | |||
| Median | 124 | 84.8 | 62.8 |
| 95% CI | [101, 142] | [75.5, 94.3] | [56.5, 70.9] |
| Time in TR | |||
| Median | 95.5 | 96.7 | 97.3 |
| 95% CI | [88.2, 99.3] | [91.3, 99.6] | [92.1, 100] |
- The tabular summary focuses on average response, the graphical summary provide a better understanding of the range of predicted values that we might expect.
- We will summarize the relevant
pcapercentiles (5, 50, 90%) at each time point following the Day 14 dose.
_tbl = @chain sim03df begin
dropmissing(_, :pca)
# Day 14 (SS) observations only
filter(df -> df.time >= 312, _)
# Summarize by dose and tad; l, m, h are 5th,50th,95th percentile
combine(
groupby(_, [:dose, :tad]),
:pca => (x -> quantile(x, [0.05, 0.5, 0.9])') => [:l, :m, :h],
)
end
# plot layers
median_layer = mapping(:tad, :m) * visual(Lines; linewidth = 2)
pi_layer = mapping(:tad, :l, :h) * visual(Band, alpha = 0.2)
tr_layer =
mapping([20, 35], color = "TR" => AlgebraOfGraphics.scale(:secondary)) *
visual(HLines; linestyle = :dash, alpha = 0.5)
# color and facet map
cf_map = mapping(
color = :dose => renamer(5 => "5mg", 10 => "10mg", 15 => "15mg") => "",
col = :dose => renamer(5 => "5mg", 10 => "10mg", 15 => "15mg"),
)
# combine layers and draw
(data(_tbl) * (pi_layer + median_layer) * cf_map) + tr_layer |> draw(
scales(;
Y = (; label = "PCA, % of normal"),
X = (; label = "Time after previous dose, hours"),
secondary = (; palette = [:gray30]),
);
figure = (;
size = (6, 4) .* 96,
title = "Predicted PCA-Time Profiles at Steady-state (Day 14) by Dose",
subtitle = "Median (line), 90%PI (band), TR (dash-line)",
titlealign = :left,
),
axis = (;
limits = (0, 24, 0, 80),
xticks = [0, 12, 24],
xlabelpadding = 10,
yticks = 0:20:80,
),
legend = (; orientation = :horizontal, framevisible = false, position = :bottom),
)4.5 Evaluation
- 10 mg PO daily dosage regimen offers a reasonable balance of TA, TTA, TTR.
5 Conclusion
- Presented the basics of simulation in Pumas using several examples that utilize built-in functionality and user-defined functions.