using Pumas
using PharmaDatasets
using DataFramesMeta
using PumasUtilities
using CSV
Case Study III: Development of a population PKPD model
1 Introduction
This is the third tutorial in a series of case studies based on the tutorials found here . The third case study is about building a sequential PKPD model. It has IV infusion dosing, PK is governed by a simple one compartment model, and PD is an indirect response model (IDR) of histamine concentrations.
2 Data
The datasets are available from the PharmaDatasets package. One for the PK model (CS3_IVINFEST) and another for the PD model (CS3_IVINFPDEST). First, we read the data for the PK model. We define an :evid and a :cmt column and set all event row values of :CONC to missing.
pkdata = CSV.read(dataset("pumas/event_data/CS3_IVINFEST", String), DataFrame; header = 4)
@rtransform!(pkdata, :evid = :AMT == 0 ? 0 : 1)
@rtransform!(pkdata, :cmt = :AMT == 0 ? missing : Symbol("Central"))
@rtransform!(pkdata, :CONC = :evid == 1 ? missing : :CONC)Then, we map the DataFrame to a population. We can omit specifying the cmt and evid keyword because we used the default value of lower case :cmt and :evid.
pk_population = read_pumas(
pkdata;
id = :CID,
time = :TIME,
observations = [:CONC],
amt = :AMT,
rate = :RATE,
)Population
Subjects: 20
Observations: CONC
The data can be plotted using the observations_vs_time plot.
observations_vs_time(pk_population; axis = (title = "PK data plot",))To emphasize individual trajectories, the sim_plot function also works on a population.
sim_plot(pk_population; axis = (title = "PK data plot",))3 PK Model definition
The next step is to define the PK model. Since we have IV infusion we do not need a depot. The model does not contain any significant distribution phase. With just a Central compartment, we can use the Central1 predefined model and its associated closed form solution. This is equivalent to ADVAN1 in NONMEM.
inf1cmt = @model begin
@param begin
θcl ∈ RealDomain(lower = 0.0)
θvc ∈ RealDomain(lower = 0.0)
Ω ∈ PDiagDomain(2)
σ_add ∈ RealDomain(lower = 0.0)
σ_prop ∈ RealDomain(lower = 0.0)
end
@random begin
η ~ MvNormal(Ω)
end
@pre begin
CL = θcl * exp(η[1])
Vc = θvc * exp(η[2])
end
@dynamics Central1
@derived begin
conc_model := @. Central / Vc
CONC ~ @. CombinedNormal(conc_model, σ_add, σ_prop)
end
endPumasModel
Parameters: θcl, θvc, Ω, σ_add, σ_prop
Random effects: η
Covariates:
Dynamical system variables: Central
Dynamical system type: Closed form
Derived: CONC
Observed: CONC
To be able to fit the model we need to specify initial parameters.
initial_est_inf1cmt = (
θcl = 1.0,
θvc = 1.0,
Ω = Diagonal([0.09, 0.09]),
σ_add = sqrt(10.0),
σ_prop = sqrt(0.01),
)(θcl = 1.0, θvc = 1.0, Ω = [0.09 0.0; 0.0 0.09], σ_add = 3.1622776601683795, σ_prop = 0.1)
And then we can fit the model to data.
inf1cmt_results = fit(inf1cmt, pk_population, initial_est_inf1cmt, FOCE())[ Info: Checking the initial parameter values. [ Info: The initial negative log likelihood and its gradient are finite. Check passed. Iter Function value Gradient norm 0 3.174194e+03 1.463122e+03 * time: 0.034960031509399414 1 1.700194e+03 3.899473e+02 * time: 2.17771315574646 2 1.372117e+03 2.133637e+02 * time: 2.185289144515991 3 1.149219e+03 9.540101e+01 * time: 2.193289041519165 4 1.063179e+03 5.172865e+01 * time: 2.200493097305298 5 1.025366e+03 2.646221e+01 * time: 2.207524061203003 6 1.011715e+03 1.666561e+01 * time: 2.2141799926757812 7 1.007591e+03 1.182557e+01 * time: 2.220587968826294 8 1.006663e+03 9.681515e+00 * time: 2.226720094680786 9 1.006394e+03 8.838980e+00 * time: 2.232619047164917 10 1.006061e+03 8.916639e+00 * time: 2.239915132522583 11 1.005287e+03 8.898501e+00 * time: 2.246212959289551 12 1.003673e+03 1.594601e+01 * time: 2.252608060836792 13 1.000433e+03 3.264510e+01 * time: 2.2592861652374268 14 9.939620e+02 5.680776e+01 * time: 2.2659339904785156 15 9.920492e+02 8.189008e+01 * time: 2.2729599475860596 16 9.853470e+02 4.792287e+01 * time: 2.280225992202759 17 9.821580e+02 4.099167e+01 * time: 2.2859699726104736 18 9.784445e+02 4.359738e+01 * time: 2.292513132095337 19 9.753844e+02 1.715016e+01 * time: 2.298535108566284 20 9.742523e+02 1.244736e+01 * time: 2.3035759925842285 21 9.734762e+02 1.086879e+01 * time: 2.3086600303649902 22 9.729031e+02 1.529972e+01 * time: 2.3135690689086914 23 9.714972e+02 2.051054e+01 * time: 2.318861961364746 24 9.702763e+02 1.703802e+01 * time: 2.324092149734497 25 9.693945e+02 1.242588e+01 * time: 2.3293261528015137 26 9.690627e+02 1.193813e+01 * time: 2.3343889713287354 27 9.687959e+02 1.049254e+01 * time: 2.339709997177124 28 9.683343e+02 7.801000e+00 * time: 2.344856023788452 29 9.667001e+02 1.096197e+01 * time: 2.351125955581665 30 9.660129e+02 9.792112e+00 * time: 2.3571510314941406 31 9.655534e+02 9.823330e+00 * time: 2.3633341789245605 32 9.651971e+02 1.059550e+01 * time: 2.45575213432312 33 9.636185e+02 1.011640e+01 * time: 2.4610941410064697 34 9.621257e+02 7.727968e+00 * time: 2.466168165206909 35 9.603739e+02 9.857406e+00 * time: 2.471388101577759 36 9.603277e+02 1.508837e+01 * time: 2.4767510890960693 37 9.598745e+02 3.570285e-01 * time: 2.4821481704711914 38 9.598694e+02 2.341098e-01 * time: 2.4874889850616455 39 9.598690e+02 9.077958e-02 * time: 2.492187023162842 40 9.598690e+02 3.615731e-02 * time: 2.4967620372772217 41 9.598690e+02 3.631910e-03 * time: 2.5013060569763184 42 9.598690e+02 3.934849e-04 * time: 2.5054070949554443
FittedPumasModel
Dynamical system type: Closed form
Number of subjects: 20
Observation records: Active Missing
CONC: 220 0
Total: 220 0
Number of parameters: Constant Optimized
0 6
Likelihood approximation: FOCE
Likelihood optimizer: BFGS
Termination Reason: GradientNorm
Log-likelihood value: -959.86896
------------------
Estimate
------------------
θcl 0.024451
θvc 0.074289
Ω₁,₁ 0.072037
Ω₂,₂ 0.09384
σ_add 3.2726
σ_prop 0.10228
------------------
4 Model diagnostics
As usual, we use the inspect function to calculate all diagnostics.
inf1cmt_insp = inspect(inf1cmt_results)[ Info: Calculating predictions. [ Info: Calculating weighted residuals. [ Info: Calculating empirical bayes. [ Info: Evaluating dose control parameters. [ Info: Evaluating individual parameters. [ Info: Done.
FittedPumasModelInspection
Likelihood approximation used for weighted residuals: FOCE
These can be saved to a file by constructing a table representation of everything from predictions to weighted residuals and empirical bayes estimes and individual coefficients (POSTHOC in NONMEM).
df_inspect = DataFrame(inf1cmt_insp)
CSV.write("inspect_file.csv", df_inspect)"inspect_file.csv"
Besides mean predictions, it is also simple to simulate from the estimated model using the empirical bayes estimates as the values for the random effects.
sim_plot(simobs(inf1cmt, pk_population, coef(inf1cmt_results)))For the PD model we need individual CL and Vc values.
icoef_dataframe = unique(df_inspect[!, [:id, :time, :CL, :Vc]], :id)
rename!(icoef_dataframe, :CL => :CLi, :Vc => :Vci)| Row | id | time | CLi | Vci |
|---|---|---|---|---|
| String | Float64 | Float64? | Float64? | |
| 1 | 1 | 0.0 | 0.0154794 | 0.0879781 |
| 2 | 10 | 0.0 | 0.0308652 | 0.0566826 |
| 3 | 11 | 0.0 | 0.028236 | 0.0814447 |
| 4 | 12 | 0.0 | 0.0397456 | 0.0597957 |
| 5 | 13 | 0.0 | 0.021964 | 0.0764398 |
| 6 | 14 | 0.0 | 0.0233953 | 0.115324 |
| 7 | 15 | 0.0 | 0.0270355 | 0.0653006 |
| 8 | 16 | 0.0 | 0.0253244 | 0.0579478 |
| 9 | 17 | 0.0 | 0.0278282 | 0.144549 |
| 10 | 18 | 0.0 | 0.0400327 | 0.0813417 |
| 11 | 19 | 0.0 | 0.0183681 | 0.0723819 |
| 12 | 2 | 0.0 | 0.0191042 | 0.0920158 |
| 13 | 20 | 0.0 | 0.0276561 | 0.0533032 |
| 14 | 3 | 0.0 | 0.0156637 | 0.0753704 |
| 15 | 4 | 0.0 | 0.0260312 | 0.0691899 |
| 16 | 5 | 0.0 | 0.0284244 | 0.103891 |
| 17 | 6 | 0.0 | 0.0245165 | 0.094743 |
| 18 | 7 | 0.0 | 0.0153045 | 0.0360822 |
| 19 | 8 | 0.0 | 0.0261443 | 0.0750091 |
| 20 | 9 | 0.0 | 0.0248482 | 0.0555691 |
5 Getting the data
The data file consists of data obtained from 10 individuals who were treated with 500mg dose TID (three times a day, every eight hours) for five days. The dataset exists in the PharmaDatasets package and we load it into memory as a DataFrame. We specify that the first column should be a String because we want to join the individual parameters from the PK step to the PD data, and the id column of the DataFrame from inspect is a String column. We use the first(input, number_of_elements) function to show the first 10 rows of the DataFrame.
pddata = CSV.read(
dataset("pumas/event_data/CS3_IVINFPDEST", String),
DataFrame;
header = 5,
types = Dict(1 => String),
)
rename!(pddata, :CID => :id, :TIME => :time, :AMT => :amt, :CMT => :cmt)
@rtransform!(pddata, :evid = :amt == 0 ? 0 : 1)
@rtransform!(pddata, :HIST = :evid == 1 ? missing : :HIST)
first(pddata, 10)| Row | id | time | HIST | amt | cmt | RATE | MDV | CLI | VI | evid |
|---|---|---|---|---|---|---|---|---|---|---|
| String | Float64 | Float64? | Int64 | Int64 | Float64 | Int64 | Float64 | Float64 | Int64 | |
| 1 | 1 | 0.0 | missing | 100 | 1 | 16.7 | 1 | 15.585 | 90.812 | 1 |
| 2 | 1 | 0.0 | missing | 1 | 2 | 0.0 | 1 | 15.585 | 90.812 | 1 |
| 3 | 1 | 0.0 | 13.008 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 |
| 4 | 1 | 0.5 | 13.808 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 |
| 5 | 1 | 1.0 | 8.6859 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 |
| 6 | 1 | 3.0 | 6.2601 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 |
| 7 | 1 | 5.0 | 4.0602 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 |
| 8 | 1 | 6.0 | 4.4985 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 |
| 9 | 1 | 8.0 | 3.2736 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 |
| 10 | 1 | 12.0 | 2.6026 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 |
The file contains 11 columns:
pd_dataframe = outerjoin(pddata, icoef_dataframe; on = [:id, :time])
sort!(pd_dataframe, [:id, :time])| Row | id | time | HIST | amt | cmt | RATE | MDV | CLI | VI | evid | CLi | Vci |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| String | Float64 | Float64? | Int64? | Int64? | Float64? | Int64? | Float64? | Float64? | Int64? | Float64? | Float64? | |
| 1 | 1 | 0.0 | missing | 100 | 1 | 16.7 | 1 | 15.585 | 90.812 | 1 | 0.0154794 | 0.0879781 |
| 2 | 1 | 0.0 | missing | 1 | 2 | 0.0 | 1 | 15.585 | 90.812 | 1 | 0.0154794 | 0.0879781 |
| 3 | 1 | 0.0 | 13.008 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 | 0.0154794 | 0.0879781 |
| 4 | 1 | 0.5 | 13.808 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 | missing | missing |
| 5 | 1 | 1.0 | 8.6859 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 | missing | missing |
| 6 | 1 | 3.0 | 6.2601 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 | missing | missing |
| 7 | 1 | 5.0 | 4.0602 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 | missing | missing |
| 8 | 1 | 6.0 | 4.4985 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 | missing | missing |
| 9 | 1 | 8.0 | 3.2736 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 | missing | missing |
| 10 | 1 | 12.0 | 2.6026 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 | missing | missing |
| 11 | 1 | 15.0 | 2.3422 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 | missing | missing |
| 12 | 1 | 18.0 | 3.8008 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 | missing | missing |
| 13 | 1 | 24.0 | 7.1397 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 | missing | missing |
| ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
| 269 | 9 | 0.0 | 34.608 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | 0.0248482 | 0.0555691 |
| 270 | 9 | 0.5 | 29.57 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | missing | missing |
| 271 | 9 | 1.0 | 27.68 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | missing | missing |
| 272 | 9 | 3.0 | 18.397 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | missing | missing |
| 273 | 9 | 5.0 | 14.908 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | missing | missing |
| 274 | 9 | 6.0 | 11.669 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | missing | missing |
| 275 | 9 | 8.0 | 8.5475 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | missing | missing |
| 276 | 9 | 12.0 | 16.895 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | missing | missing |
| 277 | 9 | 15.0 | 21.326 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | missing | missing |
| 278 | 9 | 18.0 | 26.131 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | missing | missing |
| 279 | 9 | 24.0 | 26.278 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | missing | missing |
| 280 | 9 | 30.0 | 39.643 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | missing | missing |
6 Converting the DataFrame to a collection of Subjects
population = read_pumas(pd_dataframe; observations = [:HIST], covariates = [:CLi, :Vci])Population
Subjects: 20
Covariates: CLi, Vci
Observations: HIST
7 IDR model
irm1 = @model begin
@metadata begin
desc = "POPULATION PK-PD MODELING"
timeu = u"hr" # hour
end
@param begin
tvkin ∈ RealDomain(lower = 0)
tvkout ∈ RealDomain(lower = 0)
tvic50 ∈ RealDomain(lower = 0)
tvimax ∈ RealDomain(lower = 0)
Ω ∈ PDiagDomain(3)
σ_add_pd ∈ RealDomain(lower = 0)
σ_prop_pd ∈ RealDomain(lower = 0)
end
@random begin
η ~ MvNormal(Ω)
end
@covariates CLi Vci
@pre begin
kin = tvkin * exp(η[1])
kout = tvkout * exp(η[2])
bsl = kin / kout
ic50 = tvic50 * exp(η[3])
imax = tvimax
CL = CLi
Vc = Vci
end
@init begin
Response = bsl
end
@dynamics begin
Central' = -CL / Vc * Central
Response' =
kin * (1 - imax * (Central / Vc) / (ic50 + Central / Vc)) - kout * Response
end
@derived begin
HIST ~ @. CombinedNormal(Response, σ_add_pd, σ_prop_pd)
end
endPumasModel
Parameters: tvkin, tvkout, tvic50, tvimax, Ω, σ_add_pd, σ_prop_pd
Random effects: η
Covariates: CLi, Vci
Dynamical system variables: Central, Response
Dynamical system type: Nonlinear ODE
Derived: HIST
Observed: HIST
init_θ = (
tvkin = 5.4,
tvkout = 0.3,
tvic50 = 3.9,
tvimax = 1.0,
Ω = Diagonal([0.2, 0.2, 0.2]),
σ_add_pd = 0.05,
σ_prop_pd = 0.05,
)(tvkin = 5.4, tvkout = 0.3, tvic50 = 3.9, tvimax = 1.0, Ω = [0.2 0.0 0.0; 0.0 0.2 0.0; 0.0 0.0 0.2], σ_add_pd = 0.05, σ_prop_pd = 0.05)
irm1_results = fit(
irm1,
population,
init_θ,
Pumas.FOCE();
constantcoef = (tvimax = 1.0,),
optim_options = (show_every = 10,),
)[ Info: Checking the initial parameter values. [ Info: The initial negative log likelihood and its gradient are finite. Check passed. Iter Function value Gradient norm 0 1.625453e+03 2.073489e+03 * time: 3.1948089599609375e-5 10 5.899604e+02 6.134653e+00 * time: 1.544294834136963 20 5.824375e+02 2.641126e+01 * time: 2.0772337913513184 30 5.801204e+02 1.223994e+00 * time: 2.615579843521118 40 5.798576e+02 5.986550e-01 * time: 3.158106803894043 50 5.668948e+02 6.290112e+00 * time: 3.765105962753296 60 5.591284e+02 5.111593e+00 * time: 4.305138826370239
FittedPumasModel
Dynamical system type: Nonlinear ODE
Solver(s): (OrdinaryDiffEqVerner.Vern7,OrdinaryDiffEqRosenbrock.Rodas5P)
Number of subjects: 20
Observation records: Active Missing
HIST: 240 0
Total: 240 0
Number of parameters: Constant Optimized
1 8
Likelihood approximation: FOCE
Likelihood optimizer: BFGS
Termination Reason: NoXChange
Log-likelihood value: -555.96385
------------------------
Estimate
------------------------
tvkin 5.5532
tvkout 0.27864
tvic50 30.427
† tvimax 1.0
Ω₁,₁ 0.18349
Ω₂,₂ 0.067394
Ω₃,₃ 0.20682
σ_add_pd 1.1094
σ_prop_pd 0.1038
------------------------
† indicates constant parameters
irm1_insp = inspect(irm1_results)
goodness_of_fit(irm1_insp)[ Info: Calculating predictions. [ Info: Calculating weighted residuals. [ Info: Calculating empirical bayes. [ Info: Evaluating dose control parameters. [ Info: Evaluating individual parameters. [ Info: Done.
8 Conclusion
In this tutorial, we saw how to build on topics we learnt in the previous two case studies to build a sequential PKPD model. We built two different models and saw how to forward the results from the PK model to the PD model. This concludes the third of the three case studies.