using Pumas
using PharmaDatasets
using DataFramesMeta
using PumasUtilities
using CSV

Case Study III: Development of a population PKPD model
1 Introduction
This is the third tutorial in a series of case studies based on the tutorials found here . The third case study is about building a sequential PKPD model. It has IV infusion dosing, PK is governed by a simple one compartment model, and PD is an indirect response model (IDR) of histamine concentrations.
2 Data
The datasets are available from the PharmaDatasets
package. One for the PK model (CS3_IVINFEST
) and another for the PD model (CS3_IVINFPDEST
). First, we read the data for the PK model. We define an :evid
and a :cmt
column and set all event row values of :CONC
to missing
.
= CSV.read(dataset("pumas/event_data/CS3_IVINFEST", String), DataFrame; header = 4)
pkdata @rtransform!(pkdata, :evid = :AMT == 0 ? 0 : 1)
@rtransform!(pkdata, :cmt = :AMT == 0 ? missing : Symbol("Central"))
@rtransform!(pkdata, :CONC = :evid == 1 ? missing : :CONC)
Then, we map the DataFrame
to a population. We can omit specifying the cmt
and evid
keyword because we used the default value of lower case :cmt
and :evid
.
= read_pumas(
pk_population
pkdata;= :CID,
id = :TIME,
time = [:CONC],
observations = :AMT,
amt = :RATE,
rate )
Population
Subjects: 20
Observations: CONC
The data can be plotted using the observations_vs_time
plot.
observations_vs_time(pk_population; axis = (title = "PK data plot",))
To emphasize individual trajectories, the sim_plot
function also works on a population.
sim_plot(pk_population; axis = (title = "PK data plot",))
3 PK Model definition
The next step is to define the PK model. Since we have IV infusion we do not need a depot. The model does not contain any significant distribution phase. With just a Central
compartment, we can use the Central1
predefined model and its associated closed form solution. This is equivalent to ADVAN1
in NONMEM.
= @model begin
inf1cmt @param begin
∈ RealDomain(lower = 0.0)
θcl ∈ RealDomain(lower = 0.0)
θvc ∈ PDiagDomain(2)
Ω ∈ RealDomain(lower = 0.0)
σ_add ∈ RealDomain(lower = 0.0)
σ_prop end
@random begin
~ MvNormal(Ω)
η end
@pre begin
= θcl * exp(η[1])
CL = θvc * exp(η[2])
Vc end
@dynamics Central1
@derived begin
:= @. Central / Vc
conc_model ~ @. Normal(conc_model, sqrt(σ_add^2 + (conc_model * σ_prop)^2))
CONC end
end
PumasModel
Parameters: θcl, θvc, Ω, σ_add, σ_prop
Random effects: η
Covariates:
Dynamical system variables: Central
Dynamical system type: Closed form
Derived: CONC
Observed: CONC
To be able to fit the model we need to specify initial parameters.
= (
initial_est_inf1cmt = 1.0,
θcl = 1.0,
θvc = Diagonal([0.09, 0.09]),
Ω = sqrt(10.0),
σ_add = sqrt(0.01),
σ_prop )
(θcl = 1.0,
θvc = 1.0,
Ω = [0.09 0.0; 0.0 0.09],
σ_add = 3.1622776601683795,
σ_prop = 0.1,)
And then we can fit the model to data.
= fit(inf1cmt, pk_population, initial_est_inf1cmt, FOCE()) inf1cmt_results
[ Info: Checking the initial parameter values.
[ Info: The initial negative log likelihood and its gradient are finite. Check passed.
Iter Function value Gradient norm
0 3.174194e+03 1.463122e+03
* time: 0.025844812393188477
1 1.700194e+03 3.899473e+02
* time: 0.9194159507751465
2 1.372117e+03 2.133637e+02
* time: 0.9338088035583496
3 1.149219e+03 9.540101e+01
* time: 0.9492619037628174
4 1.063179e+03 5.172865e+01
* time: 0.9637198448181152
5 1.025366e+03 2.646221e+01
* time: 0.9777109622955322
6 1.011715e+03 1.666561e+01
* time: 0.9909889698028564
7 1.007591e+03 1.182557e+01
* time: 1.0033729076385498
8 1.006663e+03 9.681515e+00
* time: 1.0150339603424072
9 1.006394e+03 8.838980e+00
* time: 1.026122808456421
10 1.006061e+03 8.916639e+00
* time: 1.0372769832611084
11 1.005287e+03 8.898501e+00
* time: 1.1123847961425781
12 1.003673e+03 1.594601e+01
* time: 1.1255929470062256
13 1.000433e+03 3.264510e+01
* time: 1.1370759010314941
14 9.939620e+02 5.680776e+01
* time: 1.14854097366333
15 9.920492e+02 8.189008e+01
* time: 1.160959005355835
16 9.853470e+02 4.792287e+01
* time: 1.1733980178833008
17 9.821580e+02 4.099167e+01
* time: 1.1833069324493408
18 9.784445e+02 4.359738e+01
* time: 1.1952118873596191
19 9.753844e+02 1.715016e+01
* time: 1.206686019897461
20 9.742523e+02 1.244736e+01
* time: 1.2159569263458252
21 9.734762e+02 1.086879e+01
* time: 1.2253758907318115
22 9.729031e+02 1.529972e+01
* time: 1.2345669269561768
23 9.714972e+02 2.051054e+01
* time: 1.2448208332061768
24 9.702763e+02 1.703802e+01
* time: 1.254978895187378
25 9.693945e+02 1.242588e+01
* time: 1.265021800994873
26 9.690627e+02 1.193813e+01
* time: 1.2757518291473389
27 9.687959e+02 1.049254e+01
* time: 1.2863068580627441
28 9.683343e+02 7.801000e+00
* time: 1.2969598770141602
29 9.667001e+02 1.096197e+01
* time: 1.3079099655151367
30 9.660129e+02 9.792112e+00
* time: 1.3170838356018066
31 9.655534e+02 9.823330e+00
* time: 1.326476812362671
32 9.651971e+02 1.059550e+01
* time: 1.335556983947754
33 9.636185e+02 1.011640e+01
* time: 1.3450908660888672
34 9.621257e+02 7.727968e+00
* time: 1.3542888164520264
35 9.603739e+02 9.857407e+00
* time: 1.3640549182891846
36 9.603277e+02 1.508837e+01
* time: 1.376173973083496
37 9.598745e+02 3.570285e-01
* time: 1.3874998092651367
38 9.598694e+02 2.341098e-01
* time: 1.3963148593902588
39 9.598690e+02 9.077958e-02
* time: 1.4043779373168945
40 9.598690e+02 3.615731e-02
* time: 1.4117720127105713
41 9.598690e+02 3.631911e-03
* time: 1.4192419052124023
42 9.598690e+02 3.934849e-04
* time: 1.4259459972381592
FittedPumasModel
Successful minimization: true
Likelihood approximation: FOCE
Likelihood Optimizer: BFGS
Dynamical system type: Closed form
Log-likelihood value: -959.86896
Number of subjects: 20
Number of parameters: Fixed Optimized
0 6
Observation records: Active Missing
CONC: 220 0
Total: 220 0
---------------------
Estimate
---------------------
θcl 0.024451
θvc 0.074289
Ω₁,₁ 0.072037
Ω₂,₂ 0.09384
σ_add 3.2726
σ_prop 0.10228
---------------------
4 Model diagnostics
As usual, we use the inspect
function to calculate all diagnostics.
= inspect(inf1cmt_results) inf1cmt_insp
[ Info: Calculating predictions.
[ Info: Calculating weighted residuals.
[ Info: Calculating empirical bayes.
[ Info: Evaluating individual parameters.
[ Info: Evaluating dose control parameters.
[ Info: Done.
FittedPumasModelInspection
Fitting was successful: true
Likehood approximation used for weighted residuals: FOCE
These can be saved to a file by constructing a table representation of everything from predictions to weighted residuals and empirical bayes estimes and individual coefficients (POSTHOC in NONMEM).
= DataFrame(inf1cmt_insp)
df_inspect write("inspect_file.csv", df_inspect) CSV.
"inspect_file.csv"
Besides mean predictions, it is also simple to simulate from the estimated model using the empirical bayes estimates as the values for the random effects.
sim_plot(simobs(inf1cmt, pk_population, coef(inf1cmt_results)))
For the PD model we need individual CL
and Vc
values.
= unique(df_inspect[!, [:id, :time, :CL, :Vc]], :id)
icoef_dataframe rename!(icoef_dataframe, :CL => :CLi, :Vc => :Vci)
Row | id | time | CLi | Vci |
---|---|---|---|---|
String | Float64 | Float64? | Float64? | |
1 | 1 | 0.0 | 0.0154794 | 0.0879781 |
2 | 10 | 0.0 | 0.0308652 | 0.0566826 |
3 | 11 | 0.0 | 0.028236 | 0.0814447 |
4 | 12 | 0.0 | 0.0397456 | 0.0597957 |
5 | 13 | 0.0 | 0.021964 | 0.0764398 |
6 | 14 | 0.0 | 0.0233953 | 0.115324 |
7 | 15 | 0.0 | 0.0270355 | 0.0653006 |
8 | 16 | 0.0 | 0.0253244 | 0.0579478 |
9 | 17 | 0.0 | 0.0278282 | 0.144549 |
10 | 18 | 0.0 | 0.0400327 | 0.0813417 |
11 | 19 | 0.0 | 0.0183681 | 0.0723819 |
12 | 2 | 0.0 | 0.0191042 | 0.0920158 |
13 | 20 | 0.0 | 0.0276561 | 0.0533032 |
14 | 3 | 0.0 | 0.0156637 | 0.0753704 |
15 | 4 | 0.0 | 0.0260312 | 0.0691899 |
16 | 5 | 0.0 | 0.0284244 | 0.103891 |
17 | 6 | 0.0 | 0.0245165 | 0.094743 |
18 | 7 | 0.0 | 0.0153045 | 0.0360822 |
19 | 8 | 0.0 | 0.0261443 | 0.0750091 |
20 | 9 | 0.0 | 0.0248482 | 0.0555691 |
5 Getting the data
The data file consists of data obtained from 10 individuals who were treated with 500mg dose TID (three times a day, every eight hours) for five days. The dataset exists in the PharmaDatasets
package and we load it into memory as a DataFrame
. We specify that the first column should be a String
because we want to join the individual parameters from the PK step to the PD data, and the id
column of the DataFrame
from inspect
is a String
column. We use the first(input, number_of_elements)
function to show the first 10 rows of the DataFrame
.
= CSV.read(
pddata dataset("pumas/event_data/CS3_IVINFPDEST", String),
DataFrame;= 5,
header = Dict(1 => String),
types
)rename!(pddata, :CID => :id, :TIME => :time, :AMT => :amt, :CMT => :cmt)
@rtransform!(pddata, :evid = :amt == 0 ? 0 : 1)
@rtransform!(pddata, :HIST = :evid == 1 ? missing : :HIST)
first(pddata, 10)
Row | id | time | HIST | amt | cmt | RATE | MDV | CLI | VI | evid |
---|---|---|---|---|---|---|---|---|---|---|
String | Float64 | Float64? | Int64 | Int64 | Float64 | Int64 | Float64 | Float64 | Int64 | |
1 | 1 | 0.0 | missing | 100 | 1 | 16.7 | 1 | 15.585 | 90.812 | 1 |
2 | 1 | 0.0 | missing | 1 | 2 | 0.0 | 1 | 15.585 | 90.812 | 1 |
3 | 1 | 0.0 | 13.008 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 |
4 | 1 | 0.5 | 13.808 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 |
5 | 1 | 1.0 | 8.6859 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 |
6 | 1 | 3.0 | 6.2601 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 |
7 | 1 | 5.0 | 4.0602 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 |
8 | 1 | 6.0 | 4.4985 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 |
9 | 1 | 8.0 | 3.2736 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 |
10 | 1 | 12.0 | 2.6026 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 |
The file contains 11 columns:
= outerjoin(pddata, icoef_dataframe; on = [:id, :time])
pd_dataframe sort!(pd_dataframe, [:id, :time])
Row | id | time | HIST | amt | cmt | RATE | MDV | CLI | VI | evid | CLi | Vci |
---|---|---|---|---|---|---|---|---|---|---|---|---|
String | Float64 | Float64? | Int64? | Int64? | Float64? | Int64? | Float64? | Float64? | Int64? | Float64? | Float64? | |
1 | 1 | 0.0 | missing | 100 | 1 | 16.7 | 1 | 15.585 | 90.812 | 1 | 0.0154794 | 0.0879781 |
2 | 1 | 0.0 | missing | 1 | 2 | 0.0 | 1 | 15.585 | 90.812 | 1 | 0.0154794 | 0.0879781 |
3 | 1 | 0.0 | 13.008 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 | 0.0154794 | 0.0879781 |
4 | 1 | 0.5 | 13.808 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 | missing | missing |
5 | 1 | 1.0 | 8.6859 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 | missing | missing |
6 | 1 | 3.0 | 6.2601 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 | missing | missing |
7 | 1 | 5.0 | 4.0602 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 | missing | missing |
8 | 1 | 6.0 | 4.4985 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 | missing | missing |
9 | 1 | 8.0 | 3.2736 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 | missing | missing |
10 | 1 | 12.0 | 2.6026 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 | missing | missing |
11 | 1 | 15.0 | 2.3422 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 | missing | missing |
12 | 1 | 18.0 | 3.8008 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 | missing | missing |
13 | 1 | 24.0 | 7.1397 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 | missing | missing |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
269 | 9 | 0.0 | 34.608 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | 0.0248482 | 0.0555691 |
270 | 9 | 0.5 | 29.57 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | missing | missing |
271 | 9 | 1.0 | 27.68 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | missing | missing |
272 | 9 | 3.0 | 18.397 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | missing | missing |
273 | 9 | 5.0 | 14.908 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | missing | missing |
274 | 9 | 6.0 | 11.669 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | missing | missing |
275 | 9 | 8.0 | 8.5475 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | missing | missing |
276 | 9 | 12.0 | 16.895 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | missing | missing |
277 | 9 | 15.0 | 21.326 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | missing | missing |
278 | 9 | 18.0 | 26.131 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | missing | missing |
279 | 9 | 24.0 | 26.278 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | missing | missing |
280 | 9 | 30.0 | 39.643 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | missing | missing |
6 Converting the DataFrame to a collection of Subjects
= read_pumas(pd_dataframe; observations = [:HIST], covariates = [:CLi, :Vci]) population
Population
Subjects: 20
Covariates: CLi, Vci
Observations: HIST
7 IDR model
= @model begin
irm1 @metadata begin
= "POPULATION PK-PD MODELING"
desc = u"hr" # hour
timeu end
@param begin
∈ RealDomain(lower = 0)
tvkin ∈ RealDomain(lower = 0)
tvkout ∈ RealDomain(lower = 0)
tvic50 ∈ RealDomain(lower = 0)
tvimax ∈ PDiagDomain(3)
Ω ∈ RealDomain(lower = 0)
σ_add_pd ∈ RealDomain(lower = 0)
σ_prop_pd end
@random begin
~ MvNormal(Ω)
η end
@covariates CLi Vci
@pre begin
= tvkin * exp(η[1])
kin = tvkout * exp(η[2])
kout = kin / kout
bsl = tvic50 * exp(η[3])
ic50 = tvimax
imax = CLi
CL = Vci
Vc end
@init begin
= bsl
Response end
@dynamics begin
' = -CL / Vc * Central
Central' =
Response* (1 - imax * (Central / Vc) / (ic50 + Central / Vc)) - kout * Response
kin end
@derived begin
~ @. Normal(Response, sqrt(σ_add_pd^2 + (Response * σ_prop_pd)^2))
HIST end
end
PumasModel
Parameters: tvkin, tvkout, tvic50, tvimax, Ω, σ_add_pd, σ_prop_pd
Random effects: η
Covariates: CLi, Vci
Dynamical system variables: Central, Response
Dynamical system type: Nonlinear ODE
Derived: HIST
Observed: HIST
= (
init_θ = 5.4,
tvkin = 0.3,
tvkout = 3.9,
tvic50 = 1.0,
tvimax = Diagonal([0.2, 0.2, 0.2]),
Ω = 0.05,
σ_add_pd = 0.05,
σ_prop_pd )
(tvkin = 5.4,
tvkout = 0.3,
tvic50 = 3.9,
tvimax = 1.0,
Ω = [0.2 0.0 0.0; 0.0 0.2 0.0; 0.0 0.0 0.2],
σ_add_pd = 0.05,
σ_prop_pd = 0.05,)
= fit(
irm1_results
irm1,
population,
init_θ,FOCE();
Pumas.= (tvimax = 1.0,),
constantcoef = (show_every = 10,),
optim_options )
[ Info: Checking the initial parameter values.
[ Info: The initial negative log likelihood and its gradient are finite. Check passed.
Iter Function value Gradient norm
0 1.625453e+03 2.073489e+03
* time: 8.296966552734375e-5
10 5.899604e+02 6.134653e+00
* time: 1.1873419284820557
20 5.824375e+02 2.641108e+01
* time: 2.265791893005371
30 5.801204e+02 1.223991e+00
* time: 3.3541629314422607
40 5.798576e+02 5.986551e-01
* time: 4.3684680461883545
50 5.668947e+02 6.290151e+00
* time: 5.477200031280518
60 5.591284e+02 5.109298e+00
* time: 6.490387916564941
70 5.559638e+02 3.233225e-04
* time: 7.422852993011475
FittedPumasModel
Successful minimization: true
Likelihood approximation: FOCE
Likelihood Optimizer: BFGS
Dynamical system type: Nonlinear ODE
Solver(s):(OrdinaryDiffEq.Vern7,OrdinaryDiffEq.Rodas5P)
Log-likelihood value: -555.96385
Number of subjects: 20
Number of parameters: Fixed Optimized
1 8
Observation records: Active Missing
HIST: 240 0
Total: 240 0
------------------------
Estimate
------------------------
tvkin 5.5533
tvkout 0.27864
tvic50 30.427
tvimax 1.0
Ω₁,₁ 0.18348
Ω₂,₂ 0.067395
Ω₃,₃ 0.20683
σ_add_pd 1.1094
σ_prop_pd 0.1038
------------------------
= inspect(irm1_results)
irm1_insp goodness_of_fit(irm1_insp)
[ Info: Calculating predictions.
[ Info: Calculating weighted residuals.
[ Info: Calculating empirical bayes.
[ Info: Evaluating individual parameters.
[ Info: Evaluating dose control parameters.
[ Info: Done.
8 Conclusion
In this tutorial, we saw how to build on topics we learnt in the previous two case studies to build a sequential PKPD model. We built two different models and saw how to forward the results from the PK model to the PD model. This concludes the third of the three case studies.