Case Study III: Development of a population PKPD model

Author

Patrick Kofod Mogensen

using Pumas
using PharmaDatasets
using DataFramesMeta
using PumasUtilities
using CSV

1 Introduction

This is the third tutorial in a series of case studies based on the tutorials found here . The third case study is about building a sequential PKPD model. It has IV infusion dosing, PK is governed by a simple one compartment model, and PD is an indirect response model (IDR) of histamine concentrations.

2 Data

The datasets are available from the PharmaDatasets package. One for the PK model (CS3_IVINFEST) and another for the PD model (CS3_IVINFPDEST). First, we read the data for the PK model. We define an :evid and a :cmt column and set all event row values of :CONC to missing.

pkdata = CSV.read(dataset("pumas/event_data/CS3_IVINFEST", String), DataFrame; header = 4)
@rtransform!(pkdata, :evid = :AMT == 0 ? 0 : 1)
@rtransform!(pkdata, :cmt = :AMT == 0 ? missing : Symbol("Central"))
@rtransform!(pkdata, :CONC = :evid == 1 ? missing : :CONC)

Then, we map the DataFrame to a population. We can omit specifying the cmt and evid keyword because we used the default value of lower case :cmt and :evid.

pk_population = read_pumas(
    pkdata;
    id = :CID,
    time = :TIME,
    observations = [:CONC],
    amt = :AMT,
    rate = :RATE,
)
Population
  Subjects: 20
  Observations: CONC

The data can be plotted using the observations_vs_time plot.

observations_vs_time(pk_population; axis = (title = "PK data plot",))

To emphasize individual trajectories, the sim_plot function also works on a population.

sim_plot(pk_population; axis = (title = "PK data plot",))

3 PK Model definition

The next step is to define the PK model. Since we have IV infusion we do not need a depot. The model does not contain any significant distribution phase. With just a Central compartment, we can use the Central1 predefined model and its associated closed form solution. This is equivalent to ADVAN1 in NONMEM.

inf1cmt = @model begin
    @param begin
        θcl  RealDomain(lower = 0.0)
        θvc  RealDomain(lower = 0.0)
        Ω  PDiagDomain(2)
        σ_add  RealDomain(lower = 0.0)
        σ_prop  RealDomain(lower = 0.0)
    end
    @random begin
        η ~ MvNormal(Ω)
    end
    @pre begin
        CL = θcl * exp(η[1])
        Vc = θvc * exp(η[2])
    end
    @dynamics Central1
    @derived begin
        conc_model := @. Central / Vc
        CONC ~ @. Normal(conc_model, sqrt(σ_add^2 + (conc_model * σ_prop)^2))
    end
end
PumasModel
  Parameters: θcl, θvc, Ω, σ_add, σ_prop
  Random effects: η
  Covariates: 
  Dynamical system variables: Central
  Dynamical system type: Closed form
  Derived: CONC
  Observed: CONC

To be able to fit the model we need to specify initial parameters.

initial_est_inf1cmt = (
    θcl = 1.0,
    θvc = 1.0,
    Ω = Diagonal([0.09, 0.09]),
    σ_add = sqrt(10.0),
    σ_prop = sqrt(0.01),
)
(θcl = 1.0,
 θvc = 1.0,
 Ω = [0.09 0.0; 0.0 0.09],
 σ_add = 3.1622776601683795,
 σ_prop = 0.1,)

And then we can fit the model to data.

inf1cmt_results = fit(inf1cmt, pk_population, initial_est_inf1cmt, FOCE())
[ Info: Checking the initial parameter values.
[ Info: The initial negative log likelihood and its gradient are finite. Check passed.
Iter     Function value   Gradient norm 
     0     3.174194e+03     1.463122e+03
 * time: 0.0244598388671875
     1     1.700194e+03     3.899473e+02
 * time: 0.9376578330993652
     2     1.372117e+03     2.133637e+02
 * time: 0.9515659809112549
     3     1.149219e+03     9.540101e+01
 * time: 0.9668939113616943
     4     1.063179e+03     5.172865e+01
 * time: 0.9817359447479248
     5     1.025366e+03     2.646221e+01
 * time: 0.9966919422149658
     6     1.011715e+03     1.666561e+01
 * time: 1.0111749172210693
     7     1.007591e+03     1.182557e+01
 * time: 1.084906816482544
     8     1.006663e+03     9.681515e+00
 * time: 1.096754789352417
     9     1.006394e+03     8.838980e+00
 * time: 1.1077659130096436
    10     1.006061e+03     8.916639e+00
 * time: 1.1188318729400635
    11     1.005287e+03     8.898501e+00
 * time: 1.1300458908081055
    12     1.003673e+03     1.594601e+01
 * time: 1.1413898468017578
    13     1.000433e+03     3.264510e+01
 * time: 1.152892827987671
    14     9.939620e+02     5.680776e+01
 * time: 1.1646649837493896
    15     9.920492e+02     8.189008e+01
 * time: 1.1775319576263428
    16     9.853470e+02     4.792287e+01
 * time: 1.1906819343566895
    17     9.821580e+02     4.099167e+01
 * time: 1.2012689113616943
    18     9.784445e+02     4.359738e+01
 * time: 1.2136318683624268
    19     9.753844e+02     1.715016e+01
 * time: 1.2258248329162598
    20     9.742523e+02     1.244736e+01
 * time: 1.2364778518676758
    21     9.734762e+02     1.086879e+01
 * time: 1.2471787929534912
    22     9.729031e+02     1.529972e+01
 * time: 1.2573518753051758
    23     9.714972e+02     2.051054e+01
 * time: 1.268157958984375
    24     9.702763e+02     1.703802e+01
 * time: 1.2788338661193848
    25     9.693945e+02     1.242588e+01
 * time: 1.2897169589996338
    26     9.690627e+02     1.193813e+01
 * time: 1.3003578186035156
    27     9.687959e+02     1.049254e+01
 * time: 1.3116447925567627
    28     9.683343e+02     7.801000e+00
 * time: 1.3226149082183838
    29     9.667001e+02     1.096197e+01
 * time: 1.3365519046783447
    30     9.660129e+02     9.792112e+00
 * time: 1.348463773727417
    31     9.655534e+02     9.823330e+00
 * time: 1.3597347736358643
    32     9.651971e+02     1.059550e+01
 * time: 1.3705558776855469
    33     9.636185e+02     1.011640e+01
 * time: 1.3816449642181396
    34     9.621257e+02     7.727968e+00
 * time: 1.3921849727630615
    35     9.603739e+02     9.857407e+00
 * time: 1.403256893157959
    36     9.603277e+02     1.508837e+01
 * time: 1.4143218994140625
    37     9.598745e+02     3.570285e-01
 * time: 1.4253687858581543
    38     9.598694e+02     2.341098e-01
 * time: 1.4354348182678223
    39     9.598690e+02     9.077958e-02
 * time: 1.477977991104126
    40     9.598690e+02     3.615731e-02
 * time: 1.4860899448394775
    41     9.598690e+02     3.631911e-03
 * time: 1.4941117763519287
    42     9.598690e+02     3.934849e-04
 * time: 1.501504898071289
FittedPumasModel

Successful minimization:                      true

Likelihood approximation:                     FOCE
Likelihood Optimizer:                         BFGS
Dynamical system type:                 Closed form

Log-likelihood value:                   -959.86896
Number of subjects:                             20
Number of parameters:         Fixed      Optimized
                                  0              6
Observation records:         Active        Missing
    CONC:                       220              0
    Total:                      220              0

---------------------
           Estimate
---------------------
θcl         0.024451
θvc         0.074289
Ω₁,₁        0.072037
Ω₂,₂        0.09384
σ_add       3.2726
σ_prop      0.10228
---------------------

4 Model diagnostics

As usual, we use the inspect function to calculate all diagnostics.

inf1cmt_insp = inspect(inf1cmt_results)
[ Info: Calculating predictions.
[ Info: Calculating weighted residuals.
[ Info: Calculating empirical bayes.
[ Info: Evaluating individual parameters.
[ Info: Evaluating dose control parameters.
[ Info: Done.
FittedPumasModelInspection

Fitting was successful: true
Likehood approximation used for weighted residuals : Pumas.FOCE{Optim.NewtonTrustRegion{Float64}, Optim.Options{Float64, Nothing}}(Optim.NewtonTrustRegion{Float64}(1.0, 100.0, 1.4901161193847656e-8, 0.1, 0.25, 0.75, false), Optim.Options(x_abstol = 0.0, x_reltol = 0.0, f_abstol = 0.0, f_reltol = 0.0, g_abstol = 1.0e-5, g_reltol = 1.0e-8, outer_x_abstol = 0.0, outer_x_reltol = 0.0, outer_f_abstol = 0.0, outer_f_reltol = 0.0, outer_g_abstol = 1.0e-8, outer_g_reltol = 1.0e-8, f_calls_limit = 0, g_calls_limit = 0, h_calls_limit = 0, allow_f_increases = false, allow_outer_f_increases = true, successive_f_tol = 1, iterations = 1000, outer_iterations = 1000, store_trace = false, trace_simplex = false, show_trace = false, extended_trace = false, show_warnings = true, show_every = 1, time_limit = NaN, )
)

These can be saved to a file by constructing a table representation of everything from predictions to weighted residuals and empirical bayes estimes and individual coefficients (POSTHOC in NONMEM).

df_inspect = DataFrame(inf1cmt_insp)
CSV.write("inspect_file.csv", df_inspect)
"inspect_file.csv"

Besides mean predictions, it is also simple to simulate from the estimated model using the empirical bayes estimates as the values for the random effects.

sim_plot(simobs(inf1cmt, pk_population, coef(inf1cmt_results)))

For the PD model we need individual CL and Vc values.

icoef_dataframe = unique(df_inspect[!, [:id, :time, :CL, :Vc]], :id)
rename!(icoef_dataframe, :CL => :CLi, :Vc => :Vci)
20×4 DataFrame
Row id time CLi Vci
String Float64 Float64? Float64?
1 1 0.0 0.0154794 0.0879781
2 10 0.0 0.0308652 0.0566826
3 11 0.0 0.028236 0.0814447
4 12 0.0 0.0397456 0.0597957
5 13 0.0 0.021964 0.0764398
6 14 0.0 0.0233953 0.115324
7 15 0.0 0.0270355 0.0653006
8 16 0.0 0.0253244 0.0579478
9 17 0.0 0.0278282 0.144549
10 18 0.0 0.0400327 0.0813417
11 19 0.0 0.0183681 0.0723819
12 2 0.0 0.0191042 0.0920158
13 20 0.0 0.0276561 0.0533032
14 3 0.0 0.0156637 0.0753704
15 4 0.0 0.0260312 0.0691899
16 5 0.0 0.0284244 0.103891
17 6 0.0 0.0245165 0.094743
18 7 0.0 0.0153045 0.0360822
19 8 0.0 0.0261443 0.0750091
20 9 0.0 0.0248482 0.0555691

5 Getting the data

The data file consists of data obtained from 10 individuals who were treated with 500mg dose TID (three times a day, every eight hours) for five days. The dataset exists in the PharmaDatasets package and we load it into memory as a DataFrame. We specify that the first column should be a String because we want to join the individual parameters from the PK step to the PD data, and the id column of the DataFrame from inspect is a String column. We use the first(input, number_of_elements) function to show the first 10 rows of the DataFrame.

pddata = CSV.read(
    dataset("pumas/event_data/CS3_IVINFPDEST", String),
    DataFrame;
    header = 5,
    types = Dict(1 => String),
)
rename!(pddata, :CID => :id, :TIME => :time, :AMT => :amt, :CMT => :cmt)
@rtransform!(pddata, :evid = :amt == 0 ? 0 : 1)
@rtransform!(pddata, :HIST = :evid == 1 ? missing : :HIST)
first(pddata, 10)
10×10 DataFrame
Row id time HIST amt cmt RATE MDV CLI VI evid
String Float64 Float64? Int64 Int64 Float64 Int64 Float64 Float64 Int64
1 1 0.0 missing 100 1 16.7 1 15.585 90.812 1
2 1 0.0 missing 1 2 0.0 1 15.585 90.812 1
3 1 0.0 13.008 0 2 0.0 0 15.585 90.812 0
4 1 0.5 13.808 0 2 0.0 0 15.585 90.812 0
5 1 1.0 8.6859 0 2 0.0 0 15.585 90.812 0
6 1 3.0 6.2601 0 2 0.0 0 15.585 90.812 0
7 1 5.0 4.0602 0 2 0.0 0 15.585 90.812 0
8 1 6.0 4.4985 0 2 0.0 0 15.585 90.812 0
9 1 8.0 3.2736 0 2 0.0 0 15.585 90.812 0
10 1 12.0 2.6026 0 2 0.0 0 15.585 90.812 0

The file contains 11 columns:

pd_dataframe = outerjoin(pddata, icoef_dataframe; on = [:id, :time])
sort!(pd_dataframe, [:id, :time])
280×12 DataFrame
255 rows omitted
Row id time HIST amt cmt RATE MDV CLI VI evid CLi Vci
String Float64 Float64? Int64? Int64? Float64? Int64? Float64? Float64? Int64? Float64? Float64?
1 1 0.0 missing 100 1 16.7 1 15.585 90.812 1 0.0154794 0.0879781
2 1 0.0 missing 1 2 0.0 1 15.585 90.812 1 0.0154794 0.0879781
3 1 0.0 13.008 0 2 0.0 0 15.585 90.812 0 0.0154794 0.0879781
4 1 0.5 13.808 0 2 0.0 0 15.585 90.812 0 missing missing
5 1 1.0 8.6859 0 2 0.0 0 15.585 90.812 0 missing missing
6 1 3.0 6.2601 0 2 0.0 0 15.585 90.812 0 missing missing
7 1 5.0 4.0602 0 2 0.0 0 15.585 90.812 0 missing missing
8 1 6.0 4.4985 0 2 0.0 0 15.585 90.812 0 missing missing
9 1 8.0 3.2736 0 2 0.0 0 15.585 90.812 0 missing missing
10 1 12.0 2.6026 0 2 0.0 0 15.585 90.812 0 missing missing
11 1 15.0 2.3422 0 2 0.0 0 15.585 90.812 0 missing missing
12 1 18.0 3.8008 0 2 0.0 0 15.585 90.812 0 missing missing
13 1 24.0 7.1397 0 2 0.0 0 15.585 90.812 0 missing missing
269 9 0.0 34.608 0 2 0.0 0 24.809 56.453 0 0.0248482 0.0555691
270 9 0.5 29.57 0 2 0.0 0 24.809 56.453 0 missing missing
271 9 1.0 27.68 0 2 0.0 0 24.809 56.453 0 missing missing
272 9 3.0 18.397 0 2 0.0 0 24.809 56.453 0 missing missing
273 9 5.0 14.908 0 2 0.0 0 24.809 56.453 0 missing missing
274 9 6.0 11.669 0 2 0.0 0 24.809 56.453 0 missing missing
275 9 8.0 8.5475 0 2 0.0 0 24.809 56.453 0 missing missing
276 9 12.0 16.895 0 2 0.0 0 24.809 56.453 0 missing missing
277 9 15.0 21.326 0 2 0.0 0 24.809 56.453 0 missing missing
278 9 18.0 26.131 0 2 0.0 0 24.809 56.453 0 missing missing
279 9 24.0 26.278 0 2 0.0 0 24.809 56.453 0 missing missing
280 9 30.0 39.643 0 2 0.0 0 24.809 56.453 0 missing missing

6 Converting the DataFrame to a collection of Subjects

population = read_pumas(pd_dataframe; observations = [:HIST], covariates = [:CLi, :Vci])
Population
  Subjects: 20
  Covariates: CLi, Vci
  Observations: HIST

7 IDR model

irm1 = @model begin
    @metadata begin
        desc = "POPULATION PK-PD MODELING"
        timeu = u"hr" # hour
    end
    @param begin
        tvkin  RealDomain(lower = 0)
        tvkout  RealDomain(lower = 0)
        tvic50  RealDomain(lower = 0)
        tvimax  RealDomain(lower = 0)
        Ω  PDiagDomain(3)
        σ_add_pd  RealDomain(lower = 0)
        σ_prop_pd  RealDomain(lower = 0)
    end

    @random begin
        η ~ MvNormal(Ω)
    end

    @covariates CLi Vci

    @pre begin
        kin = tvkin * exp(η[1])
        kout = tvkout * exp(η[2])
        bsl = kin / kout
        ic50 = tvic50 * exp(η[3])
        imax = tvimax
        CL = CLi
        Vc = Vci
    end

    @init begin
        Response = bsl
    end

    @dynamics begin
        Central' = -CL / Vc * Central
        Response' =
            kin * (1 - imax * (Central / Vc) / (ic50 + Central / Vc)) - kout * Response
    end

    @derived begin
        HIST ~ @. Normal(Response, sqrt(σ_add_pd^2 + (Response * σ_prop_pd)^2))
    end
end
PumasModel
  Parameters: tvkin, tvkout, tvic50, tvimax, Ω, σ_add_pd, σ_prop_pd
  Random effects: η
  Covariates: CLi, Vci
  Dynamical system variables: Central, Response
  Dynamical system type: Nonlinear ODE
  Derived: HIST
  Observed: HIST
init_θ = (
    tvkin = 5.4,
    tvkout = 0.3,
    tvic50 = 3.9,
    tvimax = 1.0,
    Ω = Diagonal([0.2, 0.2, 0.2]),
    σ_add_pd = 0.05,
    σ_prop_pd = 0.05,
)
(tvkin = 5.4,
 tvkout = 0.3,
 tvic50 = 3.9,
 tvimax = 1.0,
 Ω = [0.2 0.0 0.0; 0.0 0.2 0.0; 0.0 0.0 0.2],
 σ_add_pd = 0.05,
 σ_prop_pd = 0.05,)
irm1_results = fit(
    irm1,
    population,
    init_θ,
    Pumas.FOCE();
    constantcoef = (tvimax = 1.0,),
    optim_options = (show_every = 10,),
)
[ Info: Checking the initial parameter values.
[ Info: The initial negative log likelihood and its gradient are finite. Check passed.
Iter     Function value   Gradient norm 
     0     1.625453e+03     2.073489e+03
 * time: 9.107589721679688e-5
    10     5.899604e+02     6.134653e+00
 * time: 1.3376679420471191
    20     5.824375e+02     2.641108e+01
 * time: 2.4088940620422363
    30     5.801204e+02     1.223991e+00
 * time: 3.4299919605255127
    40     5.798576e+02     5.986551e-01
 * time: 4.405269145965576
    50     5.668947e+02     6.290151e+00
 * time: 5.5607099533081055
    60     5.591284e+02     5.109298e+00
 * time: 6.565786123275757
    70     5.559638e+02     3.233225e-04
 * time: 7.502840042114258
FittedPumasModel

Successful minimization:                      true

Likelihood approximation:                     FOCE
Likelihood Optimizer:                         BFGS
Dynamical system type:               Nonlinear ODE
Solver(s):(OrdinaryDiffEq.Vern7,OrdinaryDiffEq.Rodas5P)

Log-likelihood value:                   -555.96385
Number of subjects:                             20
Number of parameters:         Fixed      Optimized
                                  1              8
Observation records:         Active        Missing
    HIST:                       240              0
    Total:                      240              0

------------------------
              Estimate
------------------------
tvkin          5.5533
tvkout         0.27864
tvic50        30.427
tvimax         1.0
Ω₁,₁           0.18348
Ω₂,₂           0.067395
Ω₃,₃           0.20683
σ_add_pd       1.1094
σ_prop_pd      0.1038
------------------------
irm1_insp = inspect(irm1_results)
goodness_of_fit(irm1_insp)
[ Info: Calculating predictions.
[ Info: Calculating weighted residuals.
[ Info: Calculating empirical bayes.
[ Info: Evaluating individual parameters.
[ Info: Evaluating dose control parameters.
[ Info: Done.

8 Conclusion

In this tutorial, we saw how to build on topics we learnt in the previous two case studies to build a sequential PKPD model. We built two different models and saw how to forward the results from the PK model to the PD model. This concludes the third of the three case studies.