using Pumas
using PharmaDatasets
using DataFramesMeta
using PumasUtilities
using CSV

Case Study III: Development of a population PKPD model
1 Introduction
This is the third tutorial in a series of case studies based on the tutorials found here . The third case study is about building a sequential PKPD model. It has IV infusion dosing, PK is governed by a simple one compartment model, and PD is an indirect response model (IDR) of histamine concentrations.
2 Data
The datasets are available from the PharmaDatasets
package. One for the PK model (CS3_IVINFEST
) and another for the PD model (CS3_IVINFPDEST
). First, we read the data for the PK model. We define an :evid
and a :cmt
column and set all event row values of :CONC
to missing
.
= CSV.read(dataset("pumas/event_data/CS3_IVINFEST", String), DataFrame; header = 4)
pkdata @rtransform!(pkdata, :evid = :AMT == 0 ? 0 : 1)
@rtransform!(pkdata, :cmt = :AMT == 0 ? missing : Symbol("Central"))
@rtransform!(pkdata, :CONC = :evid == 1 ? missing : :CONC)
Then, we map the DataFrame
to a population. We can omit specifying the cmt
and evid
keyword because we used the default value of lower case :cmt
and :evid
.
= read_pumas(
pk_population
pkdata;= :CID,
id = :TIME,
time = [:CONC],
observations = :AMT,
amt = :RATE,
rate )
Population
Subjects: 20
Observations: CONC
The data can be plotted using the observations_vs_time
plot.
observations_vs_time(pk_population; axis = (title = "PK data plot",))
To emphasize individual trajectories, the sim_plot
function also works on a population.
sim_plot(pk_population; axis = (title = "PK data plot",))
3 PK Model definition
The next step is to define the PK model. Since we have IV infusion we do not need a depot. The model does not contain any significant distribution phase. With just a Central
compartment, we can use the Central1
predefined model and its associated closed form solution. This is equivalent to ADVAN1
in NONMEM.
= @model begin
inf1cmt @param begin
∈ RealDomain(lower = 0.0)
θcl ∈ RealDomain(lower = 0.0)
θvc ∈ PDiagDomain(2)
Ω ∈ RealDomain(lower = 0.0)
σ_add ∈ RealDomain(lower = 0.0)
σ_prop end
@random begin
~ MvNormal(Ω)
η end
@pre begin
= θcl * exp(η[1])
CL = θvc * exp(η[2])
Vc end
@dynamics Central1
@derived begin
:= @. Central / Vc
conc_model ~ @. Normal(conc_model, sqrt(σ_add^2 + (conc_model * σ_prop)^2))
CONC end
end
PumasModel
Parameters: θcl, θvc, Ω, σ_add, σ_prop
Random effects: η
Covariates:
Dynamical system variables: Central
Dynamical system type: Closed form
Derived: CONC
Observed: CONC
To be able to fit the model we need to specify initial parameters.
= (
initial_est_inf1cmt = 1.0,
θcl = 1.0,
θvc = Diagonal([0.09, 0.09]),
Ω = sqrt(10.0),
σ_add = sqrt(0.01),
σ_prop )
(θcl = 1.0,
θvc = 1.0,
Ω = [0.09 0.0; 0.0 0.09],
σ_add = 3.1622776601683795,
σ_prop = 0.1,)
And then we can fit the model to data.
= fit(inf1cmt, pk_population, initial_est_inf1cmt, FOCE()) inf1cmt_results
[ Info: Checking the initial parameter values.
[ Info: The initial negative log likelihood and its gradient are finite. Check passed.
Iter Function value Gradient norm
0 3.174194e+03 1.463122e+03
* time: 0.030604124069213867
1 1.700194e+03 3.899473e+02
* time: 1.1715681552886963
2 1.372117e+03 2.133637e+02
* time: 1.1864631175994873
3 1.149219e+03 9.540101e+01
* time: 1.2030479907989502
4 1.063179e+03 5.172865e+01
* time: 1.2181730270385742
5 1.025366e+03 2.646221e+01
* time: 1.2325031757354736
6 1.011715e+03 1.666561e+01
* time: 1.2462491989135742
7 1.007591e+03 1.182557e+01
* time: 1.259390115737915
8 1.006663e+03 9.681515e+00
* time: 1.271496057510376
9 1.006394e+03 8.838980e+00
* time: 1.2830710411071777
10 1.006061e+03 8.916639e+00
* time: 1.2946271896362305
11 1.005287e+03 8.898501e+00
* time: 1.3060431480407715
12 1.003673e+03 1.594601e+01
* time: 1.3177661895751953
13 1.000433e+03 3.264510e+01
* time: 1.3300390243530273
14 9.939620e+02 5.680776e+01
* time: 1.3420350551605225
15 9.920492e+02 8.189008e+01
* time: 1.35524320602417
16 9.853470e+02 4.792287e+01
* time: 1.4363861083984375
17 9.821580e+02 4.099167e+01
* time: 1.447594165802002
18 9.784445e+02 4.359738e+01
* time: 1.4606621265411377
19 9.753844e+02 1.715016e+01
* time: 1.4732019901275635
20 9.742523e+02 1.244736e+01
* time: 1.4832401275634766
21 9.734762e+02 1.086879e+01
* time: 1.4934890270233154
22 9.729031e+02 1.529972e+01
* time: 1.5034852027893066
23 9.714972e+02 2.051054e+01
* time: 1.514268159866333
24 9.702763e+02 1.703802e+01
* time: 1.5249030590057373
25 9.693945e+02 1.242588e+01
* time: 1.5358881950378418
26 9.690627e+02 1.193813e+01
* time: 1.5465030670166016
27 9.687959e+02 1.049254e+01
* time: 1.5595381259918213
28 9.683343e+02 7.801000e+00
* time: 1.5792369842529297
29 9.667001e+02 1.096197e+01
* time: 1.5962700843811035
30 9.660129e+02 9.792112e+00
* time: 1.615231990814209
31 9.655534e+02 9.823330e+00
* time: 1.6351280212402344
32 9.651971e+02 1.059550e+01
* time: 1.6538469791412354
33 9.636185e+02 1.011640e+01
* time: 1.6731631755828857
34 9.621257e+02 7.727968e+00
* time: 1.6905250549316406
35 9.603739e+02 9.857407e+00
* time: 1.7033190727233887
36 9.603277e+02 1.508837e+01
* time: 1.7142970561981201
37 9.598745e+02 3.570285e-01
* time: 1.7243990898132324
38 9.598694e+02 2.341098e-01
* time: 1.733781099319458
39 9.598690e+02 9.077958e-02
* time: 1.7425470352172852
40 9.598690e+02 3.615731e-02
* time: 1.7508649826049805
41 9.598690e+02 3.631911e-03
* time: 1.759831190109253
42 9.598690e+02 3.934849e-04
* time: 1.7685279846191406
FittedPumasModel
Successful minimization: true
Likelihood approximation: FOCE
Likelihood Optimizer: BFGS
Dynamical system type: Closed form
Log-likelihood value: -959.86896
Number of subjects: 20
Number of parameters: Fixed Optimized
0 6
Observation records: Active Missing
CONC: 220 0
Total: 220 0
---------------------
Estimate
---------------------
θcl 0.024451
θvc 0.074289
Ω₁,₁ 0.072037
Ω₂,₂ 0.09384
σ_add 3.2726
σ_prop 0.10228
---------------------
4 Model diagnostics
As usual, we use the inspect
function to calculate all diagnostics.
= inspect(inf1cmt_results) inf1cmt_insp
[ Info: Calculating predictions.
[ Info: Calculating weighted residuals.
[ Info: Calculating empirical bayes.
[ Info: Evaluating individual parameters.
[ Info: Evaluating dose control parameters.
[ Info: Done.
FittedPumasModelInspection
Fitting was successful: true
Likehood approximation used for weighted residuals: FOCE
These can be saved to a file by constructing a table representation of everything from predictions to weighted residuals and empirical bayes estimes and individual coefficients (POSTHOC in NONMEM).
= DataFrame(inf1cmt_insp)
df_inspect write("inspect_file.csv", df_inspect) CSV.
"inspect_file.csv"
Besides mean predictions, it is also simple to simulate from the estimated model using the empirical bayes estimates as the values for the random effects.
sim_plot(simobs(inf1cmt, pk_population, coef(inf1cmt_results)))
For the PD model we need individual CL
and Vc
values.
= unique(df_inspect[!, [:id, :time, :CL, :Vc]], :id)
icoef_dataframe rename!(icoef_dataframe, :CL => :CLi, :Vc => :Vci)
Row | id | time | CLi | Vci |
---|---|---|---|---|
String | Float64 | Float64? | Float64? | |
1 | 1 | 0.0 | 0.0154794 | 0.0879781 |
2 | 10 | 0.0 | 0.0308652 | 0.0566826 |
3 | 11 | 0.0 | 0.028236 | 0.0814447 |
4 | 12 | 0.0 | 0.0397456 | 0.0597957 |
5 | 13 | 0.0 | 0.021964 | 0.0764398 |
6 | 14 | 0.0 | 0.0233953 | 0.115324 |
7 | 15 | 0.0 | 0.0270355 | 0.0653006 |
8 | 16 | 0.0 | 0.0253244 | 0.0579478 |
9 | 17 | 0.0 | 0.0278282 | 0.144549 |
10 | 18 | 0.0 | 0.0400327 | 0.0813417 |
11 | 19 | 0.0 | 0.0183681 | 0.0723819 |
12 | 2 | 0.0 | 0.0191042 | 0.0920158 |
13 | 20 | 0.0 | 0.0276561 | 0.0533032 |
14 | 3 | 0.0 | 0.0156637 | 0.0753704 |
15 | 4 | 0.0 | 0.0260312 | 0.0691899 |
16 | 5 | 0.0 | 0.0284244 | 0.103891 |
17 | 6 | 0.0 | 0.0245165 | 0.094743 |
18 | 7 | 0.0 | 0.0153045 | 0.0360822 |
19 | 8 | 0.0 | 0.0261443 | 0.0750091 |
20 | 9 | 0.0 | 0.0248482 | 0.0555691 |
5 Getting the data
The data file consists of data obtained from 10 individuals who were treated with 500mg dose TID (three times a day, every eight hours) for five days. The dataset exists in the PharmaDatasets
package and we load it into memory as a DataFrame
. We specify that the first column should be a String
because we want to join the individual parameters from the PK step to the PD data, and the id
column of the DataFrame
from inspect
is a String
column. We use the first(input, number_of_elements)
function to show the first 10 rows of the DataFrame
.
= CSV.read(
pddata dataset("pumas/event_data/CS3_IVINFPDEST", String),
DataFrame;= 5,
header = Dict(1 => String),
types
)rename!(pddata, :CID => :id, :TIME => :time, :AMT => :amt, :CMT => :cmt)
@rtransform!(pddata, :evid = :amt == 0 ? 0 : 1)
@rtransform!(pddata, :HIST = :evid == 1 ? missing : :HIST)
first(pddata, 10)
Row | id | time | HIST | amt | cmt | RATE | MDV | CLI | VI | evid |
---|---|---|---|---|---|---|---|---|---|---|
String | Float64 | Float64? | Int64 | Int64 | Float64 | Int64 | Float64 | Float64 | Int64 | |
1 | 1 | 0.0 | missing | 100 | 1 | 16.7 | 1 | 15.585 | 90.812 | 1 |
2 | 1 | 0.0 | missing | 1 | 2 | 0.0 | 1 | 15.585 | 90.812 | 1 |
3 | 1 | 0.0 | 13.008 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 |
4 | 1 | 0.5 | 13.808 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 |
5 | 1 | 1.0 | 8.6859 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 |
6 | 1 | 3.0 | 6.2601 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 |
7 | 1 | 5.0 | 4.0602 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 |
8 | 1 | 6.0 | 4.4985 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 |
9 | 1 | 8.0 | 3.2736 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 |
10 | 1 | 12.0 | 2.6026 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 |
The file contains 11 columns:
= outerjoin(pddata, icoef_dataframe; on = [:id, :time])
pd_dataframe sort!(pd_dataframe, [:id, :time])
Row | id | time | HIST | amt | cmt | RATE | MDV | CLI | VI | evid | CLi | Vci |
---|---|---|---|---|---|---|---|---|---|---|---|---|
String | Float64 | Float64? | Int64? | Int64? | Float64? | Int64? | Float64? | Float64? | Int64? | Float64? | Float64? | |
1 | 1 | 0.0 | missing | 100 | 1 | 16.7 | 1 | 15.585 | 90.812 | 1 | 0.0154794 | 0.0879781 |
2 | 1 | 0.0 | missing | 1 | 2 | 0.0 | 1 | 15.585 | 90.812 | 1 | 0.0154794 | 0.0879781 |
3 | 1 | 0.0 | 13.008 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 | 0.0154794 | 0.0879781 |
4 | 1 | 0.5 | 13.808 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 | missing | missing |
5 | 1 | 1.0 | 8.6859 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 | missing | missing |
6 | 1 | 3.0 | 6.2601 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 | missing | missing |
7 | 1 | 5.0 | 4.0602 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 | missing | missing |
8 | 1 | 6.0 | 4.4985 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 | missing | missing |
9 | 1 | 8.0 | 3.2736 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 | missing | missing |
10 | 1 | 12.0 | 2.6026 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 | missing | missing |
11 | 1 | 15.0 | 2.3422 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 | missing | missing |
12 | 1 | 18.0 | 3.8008 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 | missing | missing |
13 | 1 | 24.0 | 7.1397 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 | missing | missing |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
269 | 9 | 0.0 | 34.608 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | 0.0248482 | 0.0555691 |
270 | 9 | 0.5 | 29.57 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | missing | missing |
271 | 9 | 1.0 | 27.68 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | missing | missing |
272 | 9 | 3.0 | 18.397 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | missing | missing |
273 | 9 | 5.0 | 14.908 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | missing | missing |
274 | 9 | 6.0 | 11.669 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | missing | missing |
275 | 9 | 8.0 | 8.5475 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | missing | missing |
276 | 9 | 12.0 | 16.895 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | missing | missing |
277 | 9 | 15.0 | 21.326 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | missing | missing |
278 | 9 | 18.0 | 26.131 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | missing | missing |
279 | 9 | 24.0 | 26.278 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | missing | missing |
280 | 9 | 30.0 | 39.643 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | missing | missing |
6 Converting the DataFrame to a collection of Subjects
= read_pumas(pd_dataframe; observations = [:HIST], covariates = [:CLi, :Vci]) population
Population
Subjects: 20
Covariates: CLi, Vci
Observations: HIST
7 IDR model
= @model begin
irm1 @metadata begin
= "POPULATION PK-PD MODELING"
desc = u"hr" # hour
timeu end
@param begin
∈ RealDomain(lower = 0)
tvkin ∈ RealDomain(lower = 0)
tvkout ∈ RealDomain(lower = 0)
tvic50 ∈ RealDomain(lower = 0)
tvimax ∈ PDiagDomain(3)
Ω ∈ RealDomain(lower = 0)
σ_add_pd ∈ RealDomain(lower = 0)
σ_prop_pd end
@random begin
~ MvNormal(Ω)
η end
@covariates CLi Vci
@pre begin
= tvkin * exp(η[1])
kin = tvkout * exp(η[2])
kout = kin / kout
bsl = tvic50 * exp(η[3])
ic50 = tvimax
imax = CLi
CL = Vci
Vc end
@init begin
= bsl
Response end
@dynamics begin
' = -CL / Vc * Central
Central' =
Response* (1 - imax * (Central / Vc) / (ic50 + Central / Vc)) - kout * Response
kin end
@derived begin
~ @. Normal(Response, sqrt(σ_add_pd^2 + (Response * σ_prop_pd)^2))
HIST end
end
PumasModel
Parameters: tvkin, tvkout, tvic50, tvimax, Ω, σ_add_pd, σ_prop_pd
Random effects: η
Covariates: CLi, Vci
Dynamical system variables: Central, Response
Dynamical system type: Nonlinear ODE
Derived: HIST
Observed: HIST
= (
init_θ = 5.4,
tvkin = 0.3,
tvkout = 3.9,
tvic50 = 1.0,
tvimax = Diagonal([0.2, 0.2, 0.2]),
Ω = 0.05,
σ_add_pd = 0.05,
σ_prop_pd )
(tvkin = 5.4,
tvkout = 0.3,
tvic50 = 3.9,
tvimax = 1.0,
Ω = [0.2 0.0 0.0; 0.0 0.2 0.0; 0.0 0.0 0.2],
σ_add_pd = 0.05,
σ_prop_pd = 0.05,)
= fit(
irm1_results
irm1,
population,
init_θ,FOCE();
Pumas.= (tvimax = 1.0,),
constantcoef = (show_every = 10,),
optim_options )
[ Info: Checking the initial parameter values.
[ Info: The initial negative log likelihood and its gradient are finite. Check passed.
Iter Function value Gradient norm
0 1.625453e+03 2.073489e+03
* time: 0.000102996826171875
10 5.899604e+02 6.134653e+00
* time: 1.743091106414795
20 5.824375e+02 2.641108e+01
* time: 3.5973751544952393
30 5.801204e+02 1.223991e+00
* time: 5.233605146408081
40 5.798576e+02 5.986551e-01
* time: 6.723281145095825
50 5.668947e+02 6.290151e+00
* time: 8.428035974502563
60 5.591284e+02 5.109298e+00
* time: 9.977617025375366
70 5.559638e+02 3.233225e-04
* time: 11.336764097213745
FittedPumasModel
Successful minimization: true
Likelihood approximation: FOCE
Likelihood Optimizer: BFGS
Dynamical system type: Nonlinear ODE
Solver(s):(OrdinaryDiffEq.Vern7,OrdinaryDiffEq.Rodas5P)
Log-likelihood value: -555.96385
Number of subjects: 20
Number of parameters: Fixed Optimized
1 8
Observation records: Active Missing
HIST: 240 0
Total: 240 0
------------------------
Estimate
------------------------
tvkin 5.5533
tvkout 0.27864
tvic50 30.427
tvimax 1.0
Ω₁,₁ 0.18348
Ω₂,₂ 0.067395
Ω₃,₃ 0.20683
σ_add_pd 1.1094
σ_prop_pd 0.1038
------------------------
= inspect(irm1_results)
irm1_insp goodness_of_fit(irm1_insp)
[ Info: Calculating predictions.
[ Info: Calculating weighted residuals.
[ Info: Calculating empirical bayes.
[ Info: Evaluating individual parameters.
[ Info: Evaluating dose control parameters.
[ Info: Done.
8 Conclusion
In this tutorial, we saw how to build on topics we learnt in the previous two case studies to build a sequential PKPD model. We built two different models and saw how to forward the results from the PK model to the PD model. This concludes the third of the three case studies.