using Pumas
using PharmaDatasets
using DataFramesMeta
using PumasUtilities
using CSV
Case Study III: Development of a population PKPD model
1 Introduction
This is the third tutorial in a series of case studies based on the tutorials found here . The third case study is about building a sequential PKPD model. It has IV infusion dosing, PK is governed by a simple one compartment model, and PD is an indirect response model (IDR) of histamine concentrations.
2 Data
The datasets are available from the PharmaDatasets package. One for the PK model (CS3_IVINFEST) and another for the PD model (CS3_IVINFPDEST). First, we read the data for the PK model. We define an :evid and a :cmt column and set all event row values of :CONC to missing.
pkdata = CSV.read(dataset("pumas/event_data/CS3_IVINFEST", String), DataFrame; header = 4)
@rtransform!(pkdata, :evid = :AMT == 0 ? 0 : 1)
@rtransform!(pkdata, :cmt = :AMT == 0 ? missing : Symbol("Central"))
@rtransform!(pkdata, :CONC = :evid == 1 ? missing : :CONC)Then, we map the DataFrame to a population. We can omit specifying the cmt and evid keyword because we used the default value of lower case :cmt and :evid.
pk_population = read_pumas(
pkdata;
id = :CID,
time = :TIME,
observations = [:CONC],
amt = :AMT,
rate = :RATE,
)Population
Subjects: 20
Observations: CONC
The data can be plotted using the observations_vs_time plot.
observations_vs_time(pk_population; axis = (title = "PK data plot",))To emphasize individual trajectories, the sim_plot function also works on a population.
sim_plot(pk_population; axis = (title = "PK data plot",))3 PK Model definition
The next step is to define the PK model. Since we have IV infusion we do not need a depot. The model does not contain any significant distribution phase. With just a Central compartment, we can use the Central1 predefined model and its associated closed form solution. This is equivalent to ADVAN1 in NONMEM.
inf1cmt = @model begin
@param begin
θcl ∈ RealDomain(lower = 0.0)
θvc ∈ RealDomain(lower = 0.0)
Ω ∈ PDiagDomain(2)
σ_add ∈ RealDomain(lower = 0.0)
σ_prop ∈ RealDomain(lower = 0.0)
end
@random begin
η ~ MvNormal(Ω)
end
@pre begin
CL = θcl * exp(η[1])
Vc = θvc * exp(η[2])
end
@dynamics Central1
@derived begin
conc_model := @. Central / Vc
CONC ~ @. Normal(conc_model, sqrt(σ_add^2 + (conc_model * σ_prop)^2))
end
endPumasModel
Parameters: θcl, θvc, Ω, σ_add, σ_prop
Random effects: η
Covariates:
Dynamical system variables: Central
Dynamical system type: Closed form
Derived: CONC
Observed: CONC
To be able to fit the model we need to specify initial parameters.
initial_est_inf1cmt = (
θcl = 1.0,
θvc = 1.0,
Ω = Diagonal([0.09, 0.09]),
σ_add = sqrt(10.0),
σ_prop = sqrt(0.01),
)(θcl = 1.0,
θvc = 1.0,
Ω = [0.09 0.0; 0.0 0.09],
σ_add = 3.1622776601683795,
σ_prop = 0.1,)
And then we can fit the model to data.
inf1cmt_results = fit(inf1cmt, pk_population, initial_est_inf1cmt, FOCE())[ Info: Checking the initial parameter values. [ Info: The initial negative log likelihood and its gradient are finite. Check passed. Iter Function value Gradient norm 0 3.174194e+03 1.463122e+03 * time: 0.03477597236633301 1 1.700194e+03 3.899473e+02 * time: 1.53666090965271 2 1.372117e+03 2.133637e+02 * time: 1.5436968803405762 3 1.149219e+03 9.540101e+01 * time: 1.5513269901275635 4 1.063179e+03 5.172865e+01 * time: 1.558302879333496 5 1.025366e+03 2.646221e+01 * time: 1.56498384475708 6 1.011715e+03 1.666561e+01 * time: 1.5713379383087158 7 1.007591e+03 1.182557e+01 * time: 1.5772910118103027 8 1.006663e+03 9.681515e+00 * time: 1.5829129219055176 9 1.006394e+03 8.838980e+00 * time: 1.5882740020751953 10 1.006061e+03 8.916639e+00 * time: 1.5934879779815674 11 1.005287e+03 8.898501e+00 * time: 1.5988240242004395 12 1.003673e+03 1.594601e+01 * time: 1.6043479442596436 13 1.000433e+03 3.264510e+01 * time: 1.6099669933319092 14 9.939620e+02 5.680776e+01 * time: 1.6157469749450684 15 9.920492e+02 8.189008e+01 * time: 1.622527837753296 16 9.853470e+02 4.792287e+01 * time: 1.6300458908081055 17 9.821580e+02 4.099167e+01 * time: 1.6360609531402588 18 9.784445e+02 4.359738e+01 * time: 1.6430208683013916 19 9.753844e+02 1.715016e+01 * time: 1.6496758460998535 20 9.742523e+02 1.244736e+01 * time: 1.6552109718322754 21 9.734762e+02 1.086879e+01 * time: 1.6608469486236572 22 9.729031e+02 1.529972e+01 * time: 1.6664128303527832 23 9.714972e+02 2.051054e+01 * time: 1.672386884689331 24 9.702763e+02 1.703802e+01 * time: 1.6783230304718018 25 9.693945e+02 1.242588e+01 * time: 1.6842968463897705 26 9.690627e+02 1.193813e+01 * time: 1.6900639533996582 27 9.687959e+02 1.049254e+01 * time: 1.6961588859558105 28 9.683343e+02 7.801000e+00 * time: 1.8674709796905518 29 9.667001e+02 1.096197e+01 * time: 1.8732788562774658 30 9.660129e+02 9.792112e+00 * time: 1.8780879974365234 31 9.655534e+02 9.823330e+00 * time: 1.882972002029419 32 9.651971e+02 1.059550e+01 * time: 1.887686014175415 33 9.636185e+02 1.011640e+01 * time: 1.8928158283233643 34 9.621257e+02 7.727968e+00 * time: 1.8979270458221436 35 9.603739e+02 9.857407e+00 * time: 1.9033470153808594 36 9.603277e+02 1.508837e+01 * time: 1.9087579250335693 37 9.598745e+02 3.570285e-01 * time: 1.914233922958374 38 9.598694e+02 2.341098e-01 * time: 1.9191770553588867 39 9.598690e+02 9.077958e-02 * time: 1.9237778186798096 40 9.598690e+02 3.615731e-02 * time: 1.9281940460205078 41 9.598690e+02 3.631911e-03 * time: 1.932668924331665 42 9.598690e+02 3.934849e-04 * time: 1.936682939529419
FittedPumasModel
Dynamical system type: Closed form
Number of subjects: 20
Observation records: Active Missing
CONC: 220 0
Total: 220 0
Number of parameters: Constant Optimized
0 6
Likelihood approximation: FOCE
Likelihood optimizer: BFGS
Termination Reason: GradientNorm
Log-likelihood value: -959.86896
------------------
Estimate
------------------
θcl 0.024451
θvc 0.074289
Ω₁,₁ 0.072037
Ω₂,₂ 0.09384
σ_add 3.2726
σ_prop 0.10228
------------------
4 Model diagnostics
As usual, we use the inspect function to calculate all diagnostics.
inf1cmt_insp = inspect(inf1cmt_results)[ Info: Calculating predictions. [ Info: Calculating weighted residuals. [ Info: Calculating empirical bayes. [ Info: Evaluating dose control parameters. [ Info: Evaluating individual parameters. [ Info: Done.
FittedPumasModelInspection
Likelihood approximation used for weighted residuals: FOCE
These can be saved to a file by constructing a table representation of everything from predictions to weighted residuals and empirical bayes estimes and individual coefficients (POSTHOC in NONMEM).
df_inspect = DataFrame(inf1cmt_insp)
CSV.write("inspect_file.csv", df_inspect)"inspect_file.csv"
Besides mean predictions, it is also simple to simulate from the estimated model using the empirical bayes estimates as the values for the random effects.
sim_plot(simobs(inf1cmt, pk_population, coef(inf1cmt_results)))For the PD model we need individual CL and Vc values.
icoef_dataframe = unique(df_inspect[!, [:id, :time, :CL, :Vc]], :id)
rename!(icoef_dataframe, :CL => :CLi, :Vc => :Vci)| Row | id | time | CLi | Vci |
|---|---|---|---|---|
| String | Float64 | Float64? | Float64? | |
| 1 | 1 | 0.0 | 0.0154794 | 0.0879781 |
| 2 | 10 | 0.0 | 0.0308652 | 0.0566826 |
| 3 | 11 | 0.0 | 0.028236 | 0.0814447 |
| 4 | 12 | 0.0 | 0.0397456 | 0.0597957 |
| 5 | 13 | 0.0 | 0.021964 | 0.0764398 |
| 6 | 14 | 0.0 | 0.0233953 | 0.115324 |
| 7 | 15 | 0.0 | 0.0270355 | 0.0653006 |
| 8 | 16 | 0.0 | 0.0253244 | 0.0579478 |
| 9 | 17 | 0.0 | 0.0278282 | 0.144549 |
| 10 | 18 | 0.0 | 0.0400327 | 0.0813417 |
| 11 | 19 | 0.0 | 0.0183681 | 0.0723819 |
| 12 | 2 | 0.0 | 0.0191042 | 0.0920158 |
| 13 | 20 | 0.0 | 0.0276561 | 0.0533032 |
| 14 | 3 | 0.0 | 0.0156637 | 0.0753704 |
| 15 | 4 | 0.0 | 0.0260312 | 0.0691899 |
| 16 | 5 | 0.0 | 0.0284244 | 0.103891 |
| 17 | 6 | 0.0 | 0.0245165 | 0.094743 |
| 18 | 7 | 0.0 | 0.0153045 | 0.0360822 |
| 19 | 8 | 0.0 | 0.0261443 | 0.0750091 |
| 20 | 9 | 0.0 | 0.0248482 | 0.0555691 |
5 Getting the data
The data file consists of data obtained from 10 individuals who were treated with 500mg dose TID (three times a day, every eight hours) for five days. The dataset exists in the PharmaDatasets package and we load it into memory as a DataFrame. We specify that the first column should be a String because we want to join the individual parameters from the PK step to the PD data, and the id column of the DataFrame from inspect is a String column. We use the first(input, number_of_elements) function to show the first 10 rows of the DataFrame.
pddata = CSV.read(
dataset("pumas/event_data/CS3_IVINFPDEST", String),
DataFrame;
header = 5,
types = Dict(1 => String),
)
rename!(pddata, :CID => :id, :TIME => :time, :AMT => :amt, :CMT => :cmt)
@rtransform!(pddata, :evid = :amt == 0 ? 0 : 1)
@rtransform!(pddata, :HIST = :evid == 1 ? missing : :HIST)
first(pddata, 10)| Row | id | time | HIST | amt | cmt | RATE | MDV | CLI | VI | evid |
|---|---|---|---|---|---|---|---|---|---|---|
| String | Float64 | Float64? | Int64 | Int64 | Float64 | Int64 | Float64 | Float64 | Int64 | |
| 1 | 1 | 0.0 | missing | 100 | 1 | 16.7 | 1 | 15.585 | 90.812 | 1 |
| 2 | 1 | 0.0 | missing | 1 | 2 | 0.0 | 1 | 15.585 | 90.812 | 1 |
| 3 | 1 | 0.0 | 13.008 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 |
| 4 | 1 | 0.5 | 13.808 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 |
| 5 | 1 | 1.0 | 8.6859 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 |
| 6 | 1 | 3.0 | 6.2601 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 |
| 7 | 1 | 5.0 | 4.0602 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 |
| 8 | 1 | 6.0 | 4.4985 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 |
| 9 | 1 | 8.0 | 3.2736 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 |
| 10 | 1 | 12.0 | 2.6026 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 |
The file contains 11 columns:
pd_dataframe = outerjoin(pddata, icoef_dataframe; on = [:id, :time])
sort!(pd_dataframe, [:id, :time])| Row | id | time | HIST | amt | cmt | RATE | MDV | CLI | VI | evid | CLi | Vci |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| String | Float64 | Float64? | Int64? | Int64? | Float64? | Int64? | Float64? | Float64? | Int64? | Float64? | Float64? | |
| 1 | 1 | 0.0 | missing | 100 | 1 | 16.7 | 1 | 15.585 | 90.812 | 1 | 0.0154794 | 0.0879781 |
| 2 | 1 | 0.0 | missing | 1 | 2 | 0.0 | 1 | 15.585 | 90.812 | 1 | 0.0154794 | 0.0879781 |
| 3 | 1 | 0.0 | 13.008 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 | 0.0154794 | 0.0879781 |
| 4 | 1 | 0.5 | 13.808 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 | missing | missing |
| 5 | 1 | 1.0 | 8.6859 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 | missing | missing |
| 6 | 1 | 3.0 | 6.2601 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 | missing | missing |
| 7 | 1 | 5.0 | 4.0602 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 | missing | missing |
| 8 | 1 | 6.0 | 4.4985 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 | missing | missing |
| 9 | 1 | 8.0 | 3.2736 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 | missing | missing |
| 10 | 1 | 12.0 | 2.6026 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 | missing | missing |
| 11 | 1 | 15.0 | 2.3422 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 | missing | missing |
| 12 | 1 | 18.0 | 3.8008 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 | missing | missing |
| 13 | 1 | 24.0 | 7.1397 | 0 | 2 | 0.0 | 0 | 15.585 | 90.812 | 0 | missing | missing |
| ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
| 269 | 9 | 0.0 | 34.608 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | 0.0248482 | 0.0555691 |
| 270 | 9 | 0.5 | 29.57 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | missing | missing |
| 271 | 9 | 1.0 | 27.68 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | missing | missing |
| 272 | 9 | 3.0 | 18.397 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | missing | missing |
| 273 | 9 | 5.0 | 14.908 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | missing | missing |
| 274 | 9 | 6.0 | 11.669 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | missing | missing |
| 275 | 9 | 8.0 | 8.5475 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | missing | missing |
| 276 | 9 | 12.0 | 16.895 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | missing | missing |
| 277 | 9 | 15.0 | 21.326 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | missing | missing |
| 278 | 9 | 18.0 | 26.131 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | missing | missing |
| 279 | 9 | 24.0 | 26.278 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | missing | missing |
| 280 | 9 | 30.0 | 39.643 | 0 | 2 | 0.0 | 0 | 24.809 | 56.453 | 0 | missing | missing |
6 Converting the DataFrame to a collection of Subjects
population = read_pumas(pd_dataframe; observations = [:HIST], covariates = [:CLi, :Vci])Population
Subjects: 20
Covariates: CLi, Vci
Observations: HIST
7 IDR model
irm1 = @model begin
@metadata begin
desc = "POPULATION PK-PD MODELING"
timeu = u"hr" # hour
end
@param begin
tvkin ∈ RealDomain(lower = 0)
tvkout ∈ RealDomain(lower = 0)
tvic50 ∈ RealDomain(lower = 0)
tvimax ∈ RealDomain(lower = 0)
Ω ∈ PDiagDomain(3)
σ_add_pd ∈ RealDomain(lower = 0)
σ_prop_pd ∈ RealDomain(lower = 0)
end
@random begin
η ~ MvNormal(Ω)
end
@covariates CLi Vci
@pre begin
kin = tvkin * exp(η[1])
kout = tvkout * exp(η[2])
bsl = kin / kout
ic50 = tvic50 * exp(η[3])
imax = tvimax
CL = CLi
Vc = Vci
end
@init begin
Response = bsl
end
@dynamics begin
Central' = -CL / Vc * Central
Response' =
kin * (1 - imax * (Central / Vc) / (ic50 + Central / Vc)) - kout * Response
end
@derived begin
HIST ~ @. Normal(Response, sqrt(σ_add_pd^2 + (Response * σ_prop_pd)^2))
end
endPumasModel
Parameters: tvkin, tvkout, tvic50, tvimax, Ω, σ_add_pd, σ_prop_pd
Random effects: η
Covariates: CLi, Vci
Dynamical system variables: Central, Response
Dynamical system type: Nonlinear ODE
Derived: HIST
Observed: HIST
init_θ = (
tvkin = 5.4,
tvkout = 0.3,
tvic50 = 3.9,
tvimax = 1.0,
Ω = Diagonal([0.2, 0.2, 0.2]),
σ_add_pd = 0.05,
σ_prop_pd = 0.05,
)(tvkin = 5.4,
tvkout = 0.3,
tvic50 = 3.9,
tvimax = 1.0,
Ω = [0.2 0.0 0.0; 0.0 0.2 0.0; 0.0 0.0 0.2],
σ_add_pd = 0.05,
σ_prop_pd = 0.05,)
irm1_results = fit(
irm1,
population,
init_θ,
Pumas.FOCE();
constantcoef = (tvimax = 1.0,),
optim_options = (show_every = 10,),
)[ Info: Checking the initial parameter values. [ Info: The initial negative log likelihood and its gradient are finite. Check passed. Iter Function value Gradient norm 0 1.625453e+03 2.073489e+03 * time: 2.6941299438476562e-5 10 5.899604e+02 6.134653e+00 * time: 1.78330397605896 20 5.824375e+02 2.641109e+01 * time: 2.7224960327148438 30 5.801204e+02 1.223989e+00 * time: 3.5902349948883057 40 5.798576e+02 5.986551e-01 * time: 4.439275026321411 50 5.668948e+02 6.290186e+00 * time: 5.459342002868652 60 5.591291e+02 5.129868e+00 * time: 6.356514930725098 70 5.559638e+02 3.219738e-04 * time: 7.163459062576294
FittedPumasModel
Dynamical system type: Nonlinear ODE
Solver(s): (OrdinaryDiffEqVerner.Vern7,OrdinaryDiffEqRosenbrock.Rodas5P)
Number of subjects: 20
Observation records: Active Missing
HIST: 240 0
Total: 240 0
Number of parameters: Constant Optimized
1 8
Likelihood approximation: FOCE
Likelihood optimizer: BFGS
Termination Reason: GradientNorm
Log-likelihood value: -555.96385
------------------------
Estimate
------------------------
tvkin 5.5533
tvkout 0.27864
tvic50 30.427
† tvimax 1.0
Ω₁,₁ 0.18348
Ω₂,₂ 0.067395
Ω₃,₃ 0.20683
σ_add_pd 1.1094
σ_prop_pd 0.1038
------------------------
† indicates constant parameters
irm1_insp = inspect(irm1_results)
goodness_of_fit(irm1_insp)[ Info: Calculating predictions. [ Info: Calculating weighted residuals. [ Info: Calculating empirical bayes. [ Info: Evaluating dose control parameters. [ Info: Evaluating individual parameters. [ Info: Done.
8 Conclusion
In this tutorial, we saw how to build on topics we learnt in the previous two case studies to build a sequential PKPD model. We built two different models and saw how to forward the results from the PK model to the PD model. This concludes the third of the three case studies.