Case Study III: Development of a population PKPD model

Author

Patrick Kofod Mogensen

using Pumas
using PharmaDatasets
using DataFramesMeta
using PumasUtilities
using CSV

1 Introduction

This is the third tutorial in a series of case studies based on the tutorials found here . The third case study is about building a sequential PKPD model. It has IV infusion dosing, PK is governed by a simple one compartment model, and PD is an indirect response model (IDR) of histamine concentrations.

2 Data

The datasets are available from the PharmaDatasets package. One for the PK model (CS3_IVINFEST) and another for the PD model (CS3_IVINFPDEST). First, we read the data for the PK model. We define an :evid and a :cmt column and set all event row values of :CONC to missing.

pkdata = CSV.read(dataset("pumas/event_data/CS3_IVINFEST", String), DataFrame; header = 4)
@rtransform!(pkdata, :evid = :AMT == 0 ? 0 : 1)
@rtransform!(pkdata, :cmt = :AMT == 0 ? missing : Symbol("Central"))
@rtransform!(pkdata, :CONC = :evid == 1 ? missing : :CONC)

Then, we map the DataFrame to a population. We can omit specifying the cmt and evid keyword because we used the default value of lower case :cmt and :evid.

pk_population = read_pumas(
    pkdata;
    id = :CID,
    time = :TIME,
    observations = [:CONC],
    amt = :AMT,
    rate = :RATE,
)
Population
  Subjects: 20
  Observations: CONC

The data can be plotted using the observations_vs_time plot.

observations_vs_time(pk_population; axis = (title = "PK data plot",))

To emphasize individual trajectories, the sim_plot function also works on a population.

sim_plot(pk_population; axis = (title = "PK data plot",))

3 PK Model definition

The next step is to define the PK model. Since we have IV infusion we do not need a depot. The model does not contain any significant distribution phase. With just a Central compartment, we can use the Central1 predefined model and its associated closed form solution. This is equivalent to ADVAN1 in NONMEM.

inf1cmt = @model begin
    @param begin
        θcl  RealDomain(lower = 0.0)
        θvc  RealDomain(lower = 0.0)
        Ω  PDiagDomain(2)
        σ_add  RealDomain(lower = 0.0)
        σ_prop  RealDomain(lower = 0.0)
    end
    @random begin
        η ~ MvNormal(Ω)
    end
    @pre begin
        CL = θcl * exp(η[1])
        Vc = θvc * exp(η[2])
    end
    @dynamics Central1
    @derived begin
        conc_model := @. Central / Vc
        CONC ~ @. Normal(conc_model, sqrt(σ_add^2 + (conc_model * σ_prop)^2))
    end
end
PumasModel
  Parameters: θcl, θvc, Ω, σ_add, σ_prop
  Random effects: η
  Covariates:
  Dynamical system variables: Central
  Dynamical system type: Closed form
  Derived: CONC
  Observed: CONC

To be able to fit the model we need to specify initial parameters.

initial_est_inf1cmt = (
    θcl = 1.0,
    θvc = 1.0,
    Ω = Diagonal([0.09, 0.09]),
    σ_add = sqrt(10.0),
    σ_prop = sqrt(0.01),
)
(θcl = 1.0,
 θvc = 1.0,
 Ω = [0.09 0.0; 0.0 0.09],
 σ_add = 3.1622776601683795,
 σ_prop = 0.1,)

And then we can fit the model to data.

inf1cmt_results = fit(inf1cmt, pk_population, initial_est_inf1cmt, FOCE())
[ Info: Checking the initial parameter values.
[ Info: The initial negative log likelihood and its gradient are finite. Check passed.
Iter     Function value   Gradient norm 
     0     3.174194e+03     1.463122e+03
 * time: 0.025844812393188477
     1     1.700194e+03     3.899473e+02
 * time: 0.9194159507751465
     2     1.372117e+03     2.133637e+02
 * time: 0.9338088035583496
     3     1.149219e+03     9.540101e+01
 * time: 0.9492619037628174
     4     1.063179e+03     5.172865e+01
 * time: 0.9637198448181152
     5     1.025366e+03     2.646221e+01
 * time: 0.9777109622955322
     6     1.011715e+03     1.666561e+01
 * time: 0.9909889698028564
     7     1.007591e+03     1.182557e+01
 * time: 1.0033729076385498
     8     1.006663e+03     9.681515e+00
 * time: 1.0150339603424072
     9     1.006394e+03     8.838980e+00
 * time: 1.026122808456421
    10     1.006061e+03     8.916639e+00
 * time: 1.0372769832611084
    11     1.005287e+03     8.898501e+00
 * time: 1.1123847961425781
    12     1.003673e+03     1.594601e+01
 * time: 1.1255929470062256
    13     1.000433e+03     3.264510e+01
 * time: 1.1370759010314941
    14     9.939620e+02     5.680776e+01
 * time: 1.14854097366333
    15     9.920492e+02     8.189008e+01
 * time: 1.160959005355835
    16     9.853470e+02     4.792287e+01
 * time: 1.1733980178833008
    17     9.821580e+02     4.099167e+01
 * time: 1.1833069324493408
    18     9.784445e+02     4.359738e+01
 * time: 1.1952118873596191
    19     9.753844e+02     1.715016e+01
 * time: 1.206686019897461
    20     9.742523e+02     1.244736e+01
 * time: 1.2159569263458252
    21     9.734762e+02     1.086879e+01
 * time: 1.2253758907318115
    22     9.729031e+02     1.529972e+01
 * time: 1.2345669269561768
    23     9.714972e+02     2.051054e+01
 * time: 1.2448208332061768
    24     9.702763e+02     1.703802e+01
 * time: 1.254978895187378
    25     9.693945e+02     1.242588e+01
 * time: 1.265021800994873
    26     9.690627e+02     1.193813e+01
 * time: 1.2757518291473389
    27     9.687959e+02     1.049254e+01
 * time: 1.2863068580627441
    28     9.683343e+02     7.801000e+00
 * time: 1.2969598770141602
    29     9.667001e+02     1.096197e+01
 * time: 1.3079099655151367
    30     9.660129e+02     9.792112e+00
 * time: 1.3170838356018066
    31     9.655534e+02     9.823330e+00
 * time: 1.326476812362671
    32     9.651971e+02     1.059550e+01
 * time: 1.335556983947754
    33     9.636185e+02     1.011640e+01
 * time: 1.3450908660888672
    34     9.621257e+02     7.727968e+00
 * time: 1.3542888164520264
    35     9.603739e+02     9.857407e+00
 * time: 1.3640549182891846
    36     9.603277e+02     1.508837e+01
 * time: 1.376173973083496
    37     9.598745e+02     3.570285e-01
 * time: 1.3874998092651367
    38     9.598694e+02     2.341098e-01
 * time: 1.3963148593902588
    39     9.598690e+02     9.077958e-02
 * time: 1.4043779373168945
    40     9.598690e+02     3.615731e-02
 * time: 1.4117720127105713
    41     9.598690e+02     3.631911e-03
 * time: 1.4192419052124023
    42     9.598690e+02     3.934849e-04
 * time: 1.4259459972381592
FittedPumasModel

Successful minimization:                      true

Likelihood approximation:                     FOCE
Likelihood Optimizer:                         BFGS
Dynamical system type:                 Closed form

Log-likelihood value:                   -959.86896
Number of subjects:                             20
Number of parameters:         Fixed      Optimized
                                  0              6
Observation records:         Active        Missing
    CONC:                       220              0
    Total:                      220              0

---------------------
           Estimate
---------------------
θcl         0.024451
θvc         0.074289
Ω₁,₁        0.072037
Ω₂,₂        0.09384
σ_add       3.2726
σ_prop      0.10228
---------------------

4 Model diagnostics

As usual, we use the inspect function to calculate all diagnostics.

inf1cmt_insp = inspect(inf1cmt_results)
[ Info: Calculating predictions.
[ Info: Calculating weighted residuals.
[ Info: Calculating empirical bayes.
[ Info: Evaluating individual parameters.
[ Info: Evaluating dose control parameters.
[ Info: Done.
FittedPumasModelInspection

Fitting was successful: true
Likehood approximation used for weighted residuals: FOCE

These can be saved to a file by constructing a table representation of everything from predictions to weighted residuals and empirical bayes estimes and individual coefficients (POSTHOC in NONMEM).

df_inspect = DataFrame(inf1cmt_insp)
CSV.write("inspect_file.csv", df_inspect)
"inspect_file.csv"

Besides mean predictions, it is also simple to simulate from the estimated model using the empirical bayes estimates as the values for the random effects.

sim_plot(simobs(inf1cmt, pk_population, coef(inf1cmt_results)))

For the PD model we need individual CL and Vc values.

icoef_dataframe = unique(df_inspect[!, [:id, :time, :CL, :Vc]], :id)
rename!(icoef_dataframe, :CL => :CLi, :Vc => :Vci)
20×4 DataFrame
Row id time CLi Vci
String Float64 Float64? Float64?
1 1 0.0 0.0154794 0.0879781
2 10 0.0 0.0308652 0.0566826
3 11 0.0 0.028236 0.0814447
4 12 0.0 0.0397456 0.0597957
5 13 0.0 0.021964 0.0764398
6 14 0.0 0.0233953 0.115324
7 15 0.0 0.0270355 0.0653006
8 16 0.0 0.0253244 0.0579478
9 17 0.0 0.0278282 0.144549
10 18 0.0 0.0400327 0.0813417
11 19 0.0 0.0183681 0.0723819
12 2 0.0 0.0191042 0.0920158
13 20 0.0 0.0276561 0.0533032
14 3 0.0 0.0156637 0.0753704
15 4 0.0 0.0260312 0.0691899
16 5 0.0 0.0284244 0.103891
17 6 0.0 0.0245165 0.094743
18 7 0.0 0.0153045 0.0360822
19 8 0.0 0.0261443 0.0750091
20 9 0.0 0.0248482 0.0555691

5 Getting the data

The data file consists of data obtained from 10 individuals who were treated with 500mg dose TID (three times a day, every eight hours) for five days. The dataset exists in the PharmaDatasets package and we load it into memory as a DataFrame. We specify that the first column should be a String because we want to join the individual parameters from the PK step to the PD data, and the id column of the DataFrame from inspect is a String column. We use the first(input, number_of_elements) function to show the first 10 rows of the DataFrame.

pddata = CSV.read(
    dataset("pumas/event_data/CS3_IVINFPDEST", String),
    DataFrame;
    header = 5,
    types = Dict(1 => String),
)
rename!(pddata, :CID => :id, :TIME => :time, :AMT => :amt, :CMT => :cmt)
@rtransform!(pddata, :evid = :amt == 0 ? 0 : 1)
@rtransform!(pddata, :HIST = :evid == 1 ? missing : :HIST)
first(pddata, 10)
10×10 DataFrame
Row id time HIST amt cmt RATE MDV CLI VI evid
String Float64 Float64? Int64 Int64 Float64 Int64 Float64 Float64 Int64
1 1 0.0 missing 100 1 16.7 1 15.585 90.812 1
2 1 0.0 missing 1 2 0.0 1 15.585 90.812 1
3 1 0.0 13.008 0 2 0.0 0 15.585 90.812 0
4 1 0.5 13.808 0 2 0.0 0 15.585 90.812 0
5 1 1.0 8.6859 0 2 0.0 0 15.585 90.812 0
6 1 3.0 6.2601 0 2 0.0 0 15.585 90.812 0
7 1 5.0 4.0602 0 2 0.0 0 15.585 90.812 0
8 1 6.0 4.4985 0 2 0.0 0 15.585 90.812 0
9 1 8.0 3.2736 0 2 0.0 0 15.585 90.812 0
10 1 12.0 2.6026 0 2 0.0 0 15.585 90.812 0

The file contains 11 columns:

pd_dataframe = outerjoin(pddata, icoef_dataframe; on = [:id, :time])
sort!(pd_dataframe, [:id, :time])
280×12 DataFrame
255 rows omitted
Row id time HIST amt cmt RATE MDV CLI VI evid CLi Vci
String Float64 Float64? Int64? Int64? Float64? Int64? Float64? Float64? Int64? Float64? Float64?
1 1 0.0 missing 100 1 16.7 1 15.585 90.812 1 0.0154794 0.0879781
2 1 0.0 missing 1 2 0.0 1 15.585 90.812 1 0.0154794 0.0879781
3 1 0.0 13.008 0 2 0.0 0 15.585 90.812 0 0.0154794 0.0879781
4 1 0.5 13.808 0 2 0.0 0 15.585 90.812 0 missing missing
5 1 1.0 8.6859 0 2 0.0 0 15.585 90.812 0 missing missing
6 1 3.0 6.2601 0 2 0.0 0 15.585 90.812 0 missing missing
7 1 5.0 4.0602 0 2 0.0 0 15.585 90.812 0 missing missing
8 1 6.0 4.4985 0 2 0.0 0 15.585 90.812 0 missing missing
9 1 8.0 3.2736 0 2 0.0 0 15.585 90.812 0 missing missing
10 1 12.0 2.6026 0 2 0.0 0 15.585 90.812 0 missing missing
11 1 15.0 2.3422 0 2 0.0 0 15.585 90.812 0 missing missing
12 1 18.0 3.8008 0 2 0.0 0 15.585 90.812 0 missing missing
13 1 24.0 7.1397 0 2 0.0 0 15.585 90.812 0 missing missing
269 9 0.0 34.608 0 2 0.0 0 24.809 56.453 0 0.0248482 0.0555691
270 9 0.5 29.57 0 2 0.0 0 24.809 56.453 0 missing missing
271 9 1.0 27.68 0 2 0.0 0 24.809 56.453 0 missing missing
272 9 3.0 18.397 0 2 0.0 0 24.809 56.453 0 missing missing
273 9 5.0 14.908 0 2 0.0 0 24.809 56.453 0 missing missing
274 9 6.0 11.669 0 2 0.0 0 24.809 56.453 0 missing missing
275 9 8.0 8.5475 0 2 0.0 0 24.809 56.453 0 missing missing
276 9 12.0 16.895 0 2 0.0 0 24.809 56.453 0 missing missing
277 9 15.0 21.326 0 2 0.0 0 24.809 56.453 0 missing missing
278 9 18.0 26.131 0 2 0.0 0 24.809 56.453 0 missing missing
279 9 24.0 26.278 0 2 0.0 0 24.809 56.453 0 missing missing
280 9 30.0 39.643 0 2 0.0 0 24.809 56.453 0 missing missing

6 Converting the DataFrame to a collection of Subjects

population = read_pumas(pd_dataframe; observations = [:HIST], covariates = [:CLi, :Vci])
Population
  Subjects: 20
  Covariates: CLi, Vci
  Observations: HIST

7 IDR model

irm1 = @model begin
    @metadata begin
        desc = "POPULATION PK-PD MODELING"
        timeu = u"hr" # hour
    end
    @param begin
        tvkin  RealDomain(lower = 0)
        tvkout  RealDomain(lower = 0)
        tvic50  RealDomain(lower = 0)
        tvimax  RealDomain(lower = 0)
        Ω  PDiagDomain(3)
        σ_add_pd  RealDomain(lower = 0)
        σ_prop_pd  RealDomain(lower = 0)
    end

    @random begin
        η ~ MvNormal(Ω)
    end

    @covariates CLi Vci

    @pre begin
        kin = tvkin * exp(η[1])
        kout = tvkout * exp(η[2])
        bsl = kin / kout
        ic50 = tvic50 * exp(η[3])
        imax = tvimax
        CL = CLi
        Vc = Vci
    end

    @init begin
        Response = bsl
    end

    @dynamics begin
        Central' = -CL / Vc * Central
        Response' =
            kin * (1 - imax * (Central / Vc) / (ic50 + Central / Vc)) - kout * Response
    end

    @derived begin
        HIST ~ @. Normal(Response, sqrt(σ_add_pd^2 + (Response * σ_prop_pd)^2))
    end
end
PumasModel
  Parameters: tvkin, tvkout, tvic50, tvimax, Ω, σ_add_pd, σ_prop_pd
  Random effects: η
  Covariates: CLi, Vci
  Dynamical system variables: Central, Response
  Dynamical system type: Nonlinear ODE
  Derived: HIST
  Observed: HIST
init_θ = (
    tvkin = 5.4,
    tvkout = 0.3,
    tvic50 = 3.9,
    tvimax = 1.0,
    Ω = Diagonal([0.2, 0.2, 0.2]),
    σ_add_pd = 0.05,
    σ_prop_pd = 0.05,
)
(tvkin = 5.4,
 tvkout = 0.3,
 tvic50 = 3.9,
 tvimax = 1.0,
 Ω = [0.2 0.0 0.0; 0.0 0.2 0.0; 0.0 0.0 0.2],
 σ_add_pd = 0.05,
 σ_prop_pd = 0.05,)
irm1_results = fit(
    irm1,
    population,
    init_θ,
    Pumas.FOCE();
    constantcoef = (tvimax = 1.0,),
    optim_options = (show_every = 10,),
)
[ Info: Checking the initial parameter values.
[ Info: The initial negative log likelihood and its gradient are finite. Check passed.
Iter     Function value   Gradient norm 
     0     1.625453e+03     2.073489e+03
 * time: 8.296966552734375e-5
    10     5.899604e+02     6.134653e+00
 * time: 1.1873419284820557
    20     5.824375e+02     2.641108e+01
 * time: 2.265791893005371
    30     5.801204e+02     1.223991e+00
 * time: 3.3541629314422607
    40     5.798576e+02     5.986551e-01
 * time: 4.3684680461883545
    50     5.668947e+02     6.290151e+00
 * time: 5.477200031280518
    60     5.591284e+02     5.109298e+00
 * time: 6.490387916564941
    70     5.559638e+02     3.233225e-04
 * time: 7.422852993011475
FittedPumasModel

Successful minimization:                      true

Likelihood approximation:                     FOCE
Likelihood Optimizer:                         BFGS
Dynamical system type:               Nonlinear ODE
Solver(s):(OrdinaryDiffEq.Vern7,OrdinaryDiffEq.Rodas5P)

Log-likelihood value:                   -555.96385
Number of subjects:                             20
Number of parameters:         Fixed      Optimized
                                  1              8
Observation records:         Active        Missing
    HIST:                       240              0
    Total:                      240              0

------------------------
              Estimate
------------------------
tvkin          5.5533
tvkout         0.27864
tvic50        30.427
tvimax         1.0
Ω₁,₁           0.18348
Ω₂,₂           0.067395
Ω₃,₃           0.20683
σ_add_pd       1.1094
σ_prop_pd      0.1038
------------------------
irm1_insp = inspect(irm1_results)
goodness_of_fit(irm1_insp)
[ Info: Calculating predictions.
[ Info: Calculating weighted residuals.
[ Info: Calculating empirical bayes.
[ Info: Evaluating individual parameters.
[ Info: Evaluating dose control parameters.
[ Info: Done.

8 Conclusion

In this tutorial, we saw how to build on topics we learnt in the previous two case studies to build a sequential PKPD model. We built two different models and saw how to forward the results from the PK model to the PD model. This concludes the third of the three case studies.