using Pumas
using PharmaDatasets
Covariate Selection Methods - Introduction
In pharmacometric workflows, we often have competing models to select from. In this tutorial we will review selection criteria and automated procedures to select the best model out of a set of competing candidate models.
First, we’ll review how to measure model fit, then we’ll cover model selection algorithms.
1 Model Fit Measures
Traditionally in Statistics, model comparison has been done based on a theoretical divergence metric that originates from information theory’s entropy:
\[H = - \operatorname{E}\log(p) = -\sum_i p_i \log(p_i)\]
where \(p_i\) is the probability of occurrence of the \(i\)-th possible value.
We use the \(\log\) scale because it transforms a product of probabilities into a sum, which is both numerically faster and numerically more stable due to the robustness against floating point underflow.
Entropy was the inspiration behind Akaike’s Information Criterion (AIC) (Akaike, 1973):
\[\operatorname{AIC} = -2\log{\hat{\mathcal{L}}} + 2k\]
where \(\hat{\mathcal{L}}\) is the estimated value of the likelihood for a given model and data, and \(k\) is the number of parameters in the model. Generally the likelihood is estimated by maximizing the likelihood function, thus the name maximum likelihood estimation (MLE). The likelihood describes how well the model fits the data, and in certain conditions, can be treated similarly to a probability: higher values means higher plausibility. Hence, models with higher likelihood values demonstrate better fits to the data. Since we are multiplying by a negative value, this means that lower values are preferred.
The \(-2\) was proposed in Akaike’s 1973 original paper to simplify some calculations involving \(\chi^2\) distributions and was kept around since then.
AIC was devised to “punish” model complexity, i.e models that have more parameters to fit to the data. This is why we add \(2\) to the loglikelihood value for every parameter that the model has. Due to the preference of lower AIC values this penalizes models by the number of parameters, while also making it possible to compare models with different complexities.
Building from the AIC, the Bayesian Information Criterion (BIC) (Schwarz, 1978) uses the same idea, but the penalty term is different:
\[\operatorname{BIC} = -2\log{\hat{\mathcal{L}}} + k\log(n)\]
where \(\hat{\mathcal{L}}\) is the estimated value of the likelihood for a given model and data, \(k\) is the model’s number of parameters, and \(n\) is the number of observations. It is called Bayesian because it uses a “Bayesian” argument to derive the punishment term \(k\log(n)\) in the original 1975 paper.
1.1 Example in Pumas
Let’s go over an example of model fit measures in Pumas.
First, let’s import the following packages:
We are going to use the po_sad_1
dataset from PharmaDatasets
:
= dataset("po_sad_1")
df first(df, 5)
Row | id | time | dv | amt | evid | cmt | rate | age | wt | doselevel | isPM | isfed | sex | route |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Int64 | Float64 | Float64? | Float64? | Int64 | Int64? | Float64 | Int64 | Int64 | Int64 | String3 | String3 | String7 | String3 | |
1 | 1 | 0.0 | missing | 30.0 | 1 | 1 | 0.0 | 51 | 74 | 30 | no | yes | male | ev |
2 | 1 | 0.25 | 35.7636 | missing | 0 | missing | 0.0 | 51 | 74 | 30 | no | yes | male | ev |
3 | 1 | 0.5 | 71.9551 | missing | 0 | missing | 0.0 | 51 | 74 | 30 | no | yes | male | ev |
4 | 1 | 0.75 | 97.3356 | missing | 0 | missing | 0.0 | 51 | 74 | 30 | no | yes | male | ev |
5 | 1 | 1.0 | 128.919 | missing | 0 | missing | 0.0 | 51 | 74 | 30 | no | yes | male | ev |
This is an oral dosing (route = "ev"
) NMTRAN-formatted dataset. It has 18 subjects, each with 1 dosing event (evid = 1
) and 18 measurement events (evid = 0
); and the following covariates:
age
: age in years (continuous)wt
: weight in kg (continuous)doselevel
: dosing amount, either30
,60
or90
milligrams (categorical)isPM
: subject is a poor metabolizer (binary)isfed
: subject is fed (binary)sex
: subject sex (binary)
Let’s parse df
into a Population
with read_pumas
:
=
population read_pumas(df; observations = [:dv], covariates = [:wt, :isPM, :isfed], route = :route)
Population
Subjects: 18
Covariates: wt, isPM, isfed
Observations: dv
Let’s create a 2-compartment oral absorption base model with no covariate effects:
= @model begin
base_model @metadata begin
= "base model"
desc = u"hr"
timeu end
@param begin
"""
Clearance (L/hr)
"""
∈ RealDomain(; lower = 0)
tvcl """
Central Volume (L)
"""
∈ RealDomain(; lower = 0)
tvvc """
Peripheral Volume (L)
"""
∈ RealDomain(; lower = 0)
tvvp """
Distributional Clearance (L/hr)
"""
∈ RealDomain(; lower = 0)
tvq """
Absorption rate constant (1/h)
"""
∈ RealDomain(; lower = 0)
tvka """
- ΩCL
- ΩVc
- ΩKa
- ΩVp
- ΩQ
"""
∈ PDiagDomain(5)
Ω """
Proportional RUV (SD scale)
"""
∈ RealDomain(; lower = 0)
σₚ end
@random begin
~ MvNormal(Ω)
η end
@pre begin
= tvcl * exp(η[1])
CL = tvvc * exp(η[2])
Vc = tvka * exp(η[3])
Ka = tvq * exp(η[4])
Q = tvvp * exp(η[5])
Vp end
@dynamics Depots1Central1Periph1
@derived begin
:= @. 1_000 * (Central / Vc)
cp """
Drug Concentration (ng/mL)
"""
~ @. Normal(cp, cp * σₚ)
dv end
end
PumasModel
Parameters: tvcl, tvvc, tvvp, tvq, tvka, Ω, σₚ
Random effects: η
Covariates:
Dynamical system variables: Depot, Central, Peripheral
Dynamical system type: Closed form
Derived: dv
Observed: dv
Let’s go over the model.
In the @metadata
block we are adding a model description and adding information regarding the time units (hours).
Next, we define the model’s parameters in @param
while also prepending them with a string that serves as an annotation for the parameter description. This is helpful for post-processing, since Pumas can use the description instead of the parameter name in tables and figures.
Our η
s are defined in the @random
block and are sampled from a multivariate normal distribution with mean 0
and a positive-diagonal covariance matrix Ω
. We have 5 η
s, one for each PK typical value (also known as θ
s).
We proceed by defining the individual PK parameters in the @pre
block. Each typical value is incremented by the subject’s η
s in a non-linear exponential transformation. This is done to enforce that all individual PK parameters are constrained to being positive. This also has a side effect that the individual PK parameters will be log-normally distributed.
We use the aliased short notation Depots1Central1Periph1
for the ODE system in the @dynamics
. This is equivalent to having the following equations:
' = -Ka * Depot
Depot' = Ka * Depot - (CL + Q) / Vc * Central + Q / Vp * Peripheral
Central' = Q / Vc * Central - Q / Vp * Peripheral Peripheral
Note that, in order for Depots1Central1Periph1
work correctly, we need to define Ka
, CL
, Q
, Vc
, and Vp
in the @pre
block.
Finally, in the @derived
block we define our error model (or likelihood for the statistically-minded). Here we are using a proportional error model with the Gaussian/normal likelihood. Note that Normal
is parameterized with mean and standard deviation, not with variance. That’s why we name our proportional error parameter as σₚ
and not σ²ₚ
.
Let’s now define a initial set of parameter estimates to fit our model:
= (;
iparams = 0.4,
tvka = 4.0,
tvcl = 70.0,
tvvc = 4.0,
tvq = 50.0,
tvvp = Diagonal(fill(0.04, 5)),
Ω = 0.1,
σₚ )
(tvka = 0.4,
tvcl = 4.0,
tvvc = 70.0,
tvq = 4.0,
tvvp = 50.0,
Ω = [0.04 0.0 … 0.0 0.0; 0.0 0.04 … 0.0 0.0; … ; 0.0 0.0 … 0.04 0.0; 0.0 0.0 … 0.0 0.04],
σₚ = 0.1,)
We call the fit
function to estimate the parameters of the model:
= fit(base_model, population, iparams, FOCE()) base_fit
[ Info: Checking the initial parameter values.
[ Info: The initial negative log likelihood and its gradient are finite. Check passed.
Iter Function value Gradient norm
0 1.630402e+03 2.604358e+02
* time: 0.025278091430664062
1 1.499510e+03 9.365700e+01
* time: 0.9416139125823975
2 1.447619e+03 4.714464e+01
* time: 1.0085020065307617
3 1.427906e+03 4.439232e+01
* time: 1.0719270706176758
4 1.414326e+03 2.726109e+01
* time: 1.1186299324035645
5 1.387798e+03 1.159019e+01
* time: 1.1738510131835938
6 1.382364e+03 7.060796e+00
* time: 1.2284650802612305
7 1.380839e+03 4.839103e+00
* time: 1.2853140830993652
8 1.380281e+03 4.075615e+00
* time: 1.328523874282837
9 1.379767e+03 3.303901e+00
* time: 1.3827459812164307
10 1.379390e+03 2.856359e+00
* time: 1.4441919326782227
11 1.379193e+03 2.650736e+00
* time: 1.4980530738830566
12 1.379036e+03 2.523349e+00
* time: 1.5559589862823486
13 1.378830e+03 2.638648e+00
* time: 1.609678030014038
14 1.378593e+03 3.463990e+00
* time: 1.6594290733337402
15 1.378335e+03 3.471127e+00
* time: 1.7107539176940918
16 1.378143e+03 2.756670e+00
* time: 1.7705230712890625
17 1.378019e+03 2.541343e+00
* time: 1.8282759189605713
18 1.377888e+03 2.163251e+00
* time: 1.8906140327453613
19 1.377754e+03 2.571076e+00
* time: 1.9516918659210205
20 1.377620e+03 3.370764e+00
* time: 1.9998550415039062
21 1.377413e+03 3.938291e+00
* time: 2.0554089546203613
22 1.377094e+03 4.458016e+00
* time: 2.1191930770874023
23 1.376674e+03 5.713348e+00
* time: 2.185492992401123
24 1.375946e+03 5.417530e+00
* time: 2.2673449516296387
25 1.375343e+03 5.862876e+00
* time: 2.353806972503662
26 1.374689e+03 5.717165e+00
* time: 2.4204418659210205
27 1.374056e+03 4.400490e+00
* time: 2.5136749744415283
28 1.373510e+03 2.191437e+00
* time: 2.609407901763916
29 1.373277e+03 1.203587e+00
* time: 2.6990249156951904
30 1.373233e+03 1.157761e+00
* time: 2.7745048999786377
31 1.373218e+03 8.770728e-01
* time: 2.8436830043792725
32 1.373204e+03 8.021952e-01
* time: 2.911072015762329
33 1.373190e+03 6.613857e-01
* time: 2.977902889251709
34 1.373183e+03 7.602394e-01
* time: 3.0468709468841553
35 1.373173e+03 8.552154e-01
* time: 3.1239240169525146
36 1.373162e+03 6.961928e-01
* time: 3.194952964782715
37 1.373152e+03 3.162546e-01
* time: 3.255570888519287
38 1.373148e+03 1.747381e-01
* time: 3.3243770599365234
39 1.373147e+03 1.258699e-01
* time: 3.392915964126587
40 1.373147e+03 1.074908e-01
* time: 3.459506034851074
41 1.373147e+03 6.799619e-02
* time: 3.5319418907165527
42 1.373147e+03 1.819329e-02
* time: 3.593021869659424
43 1.373147e+03 1.338880e-02
* time: 3.6458749771118164
44 1.373147e+03 1.370144e-02
* time: 3.709277868270874
45 1.373147e+03 1.315666e-02
* time: 3.772199869155884
46 1.373147e+03 1.065953e-02
* time: 3.83467698097229
47 1.373147e+03 1.069775e-02
* time: 3.898787021636963
48 1.373147e+03 6.234846e-03
* time: 3.9551219940185547
49 1.373147e+03 6.234846e-03
* time: 4.046319007873535
50 1.373147e+03 6.234846e-03
* time: 4.175332069396973
FittedPumasModel
Successful minimization: true
Likelihood approximation: FOCE
Likelihood Optimizer: BFGS
Dynamical system type: Closed form
Log-likelihood value: -1373.1468
Number of subjects: 18
Number of parameters: Fixed Optimized
0 11
Observation records: Active Missing
dv: 270 0
Total: 270 0
-------------------
Estimate
-------------------
tvcl 2.8344
tvvc 77.801
tvvp 48.754
tvq 3.9789
tvka 1.028
Ω₁,₁ 0.2638
Ω₂,₂ 0.2288
Ω₃,₃ 0.40047
Ω₄,₄ 0.37968
Ω₅,₅ 0.21495
σₚ 0.097805
-------------------
Now we are ready to showcase model fit measures. All of these functions should take a result from fit
and output a real number.
Let’s start with aic
and bic
which are included in Pumas:
aic(base_fit)
2768.2935804173985
bic(base_fit)
2807.876221966381
We are also free to create our own functions if we want to use something different than aic
or bic
.
Here’s an example of a function that takes a fitted Pumas model, m
, and outputs the -2LL (minus 2 times log-likelihood) without the constant. This is a model fit measure commonly used by NONMEM users and is is known as OFV: Objective Function Value. Hence, we will name the function ofv
:
ofv(m) = (-2 * loglikelihood(m)) - (nobs(m) * log(2π))
ofv (generic function with 1 method)
We can use it on our base_fit
model fit
result:
ofv(base_fit)
2250.0667724868754
2 Likelihood Ratio Tests
A likelihood-ratio test (LRT) is a statistical hypothesis test used in the field of statistics and probability theory to compare two statistical models and determine which one provides a better fit to a given set of observed data. It is particularly useful in the context of maximum likelihood estimation (MLE) and is commonly used for hypothesis testing in parametric statistical modeling.
The basic idea behind the likelihood ratio test is to compare the likelihoods of two competing models:
Null Hypothesis (\(H_0\)): This is the model that you want to test against. It represents a specific set of parameter values or restrictions on the model.
Alternative Hypothesis (\(H_a\)): This is the alternative model, often a more complex one or the one you want to support.
The test statistic is calculated as the ratio of the likelihood under the alternative model (\(H_a\)) to the likelihood under the null model (\(H_0\)). Mathematically, it can be expressed as:
\[\operatorname{LRT} = - 2 \log \left( \frac{\mathcal{L}(H_0)}{\mathcal{L}(H_a)} \right)\]
where:
- \(\operatorname{LRT}\): likelihood ratio test statistic
- \(\mathcal{L}(H_0)\): likelihood under \(H_0\), the likelihood of the data under the null hypothesis
- \(\mathcal{L}(H_a)\): likelihood under \(H_a\), the likelihood of the data under the alternative hypothesis
The LRT statistic follows a \(\chi^2\) (chi-squared) distribution with degrees of freedom equal to the difference in the number of parameters between the two models (i.e., the degrees of freedom is the number of additional parameters in the alternative model). In practice, you compare the LRT statistic to \(\chi^2\) distribution to determine whether the alternative model is a significantly better fit to the data than the null model.
The key idea is that if the p-value derived from the LRT statistic is lower than your desired \(\alpha\) (the type-1 error rate, commonly set to \(0.05\)), you would reject the null hypothesis in favor of the alternative hypothesis, indicating that the alternative model provides a better fit to the data.
The likelihood-ratio test requires that the models be nested, i.e. the more complex model can be transformed into the simpler model by imposing constraints on the former’s parameters.
This is generally the case when performing LRT in a covariate selection context. However, be mindful of not violating this assumption when performing LRT.
2.1 Example in Pumas
Pumas provides us with the lrtest
function to perform LRT. It takes 2 positional arguments as competing models:
- Model under \(H_0\) (i.e. the model with less parameters)
- Model under \(H_a\) (i.e. the model with more parameters)
Let’s define a covariate model that takes wt
into consideration for all the clearance and volume PK parameters:
= @model begin
covariate_model @metadata begin
= "covariate model that uses weight covariate information"
desc = u"hr"
timeu end
@param begin
"""
Clearance (L/hr)
"""
∈ RealDomain(; lower = 0)
tvcl """
Central Volume (L)
"""
∈ RealDomain(; lower = 0)
tvvc """
Peripheral Volume (L)
"""
∈ RealDomain(; lower = 0)
tvvp """
Distributional Clearance (L/hr)
"""
∈ RealDomain(; lower = 0)
tvq """
Absorption rate constant (h-1)
"""
∈ RealDomain(; lower = 0)
tvka """
Power exponent on weight for Clearance # new
"""
∈ RealDomain() # new
dwtcl """
Power exponent on weight for Distributional Clearance # new
"""
∈ RealDomain() # new
dwtq """
- ΩCL
- ΩVc
- ΩKa
- ΩVp
- ΩQ
"""
∈ PDiagDomain(5)
Ω """
Proportional RUV (SD scale)
"""
∈ RealDomain(; lower = 0)
σₚ end
@random begin
~ MvNormal(Ω)
η end
@covariates begin
"""
Weight (kg) # new
"""
# new
wt end
@pre begin
= tvcl * exp(η[1]) * (wt / 70)^dwtcl # new
CL = tvvc * exp(η[2]) * (wt / 70) # new
Vc = tvka * exp(η[3])
Ka = tvq * exp(η[4]) * (wt / 70)^dwtq # new
Q = tvvp * exp(η[5]) * (wt / 70) # new
Vp end
@dynamics Depots1Central1Periph1
@derived begin
:= @. 1000 * (Central / Vc)
cp """
Drug Concentration (ng/mL)
"""
~ @. Normal(cp, cp * σₚ)
dv end
end
PumasModel
Parameters: tvcl, tvvc, tvvp, tvq, tvka, dwtcl, dwtq, Ω, σₚ
Random effects: η
Covariates: wt
Dynamical system variables: Depot, Central, Peripheral
Dynamical system type: Closed form
Derived: dv
Observed: dv
This is almost the same model as before. However, we are adding a few tweaks (commented with # new
):
wt
in the new@covariates
block- allometric scaling based on
wt
for the individual PK parametersCL
,Q
,Vc
andVp
- new parameters in
@param
for the exponent of the power function ofwt
on both individual clearance PK parametersCL
andQ
Since covariate_model
has two new parameters in the @param
block, we need to add them to the initial set of parameter estimates. We can do this by creating a new NamedTuple
that builts upon the last one iparams
, while also adding initial values for dwtcl
and dwtq
:
= (; iparams..., dwtcl = 0.75, dwtq = 0.75) iparams_covariate
(tvka = 0.4,
tvcl = 4.0,
tvvc = 70.0,
tvq = 4.0,
tvvp = 50.0,
Ω = [0.04 0.0 … 0.0 0.0; 0.0 0.04 … 0.0 0.0; … ; 0.0 0.0 … 0.04 0.0; 0.0 0.0 … 0.0 0.04],
σₚ = 0.1,
dwtcl = 0.75,
dwtq = 0.75,)
We are using Julia’s splatting ...
operator to expand inline the iparams
NamedTuple
.
Now we fit
our covariate_model
:
= fit(covariate_model, population, iparams_covariate, FOCE()) covariate_fit
[ Info: Checking the initial parameter values.
[ Info: The initial negative log likelihood and its gradient are finite. Check passed.
Iter Function value Gradient norm
0 1.555051e+03 2.584685e+02
* time: 8.893013000488281e-5
1 1.436886e+03 9.959639e+01
* time: 0.05227994918823242
2 1.383250e+03 3.318037e+01
* time: 0.11073184013366699
3 1.372961e+03 2.525341e+01
* time: 0.1546459197998047
4 1.365242e+03 2.081002e+01
* time: 0.20331978797912598
5 1.350200e+03 1.667386e+01
* time: 0.253126859664917
6 1.346374e+03 9.195785e+00
* time: 0.29715490341186523
7 1.344738e+03 8.614309e+00
* time: 0.34270691871643066
8 1.343902e+03 4.950745e+00
* time: 0.3825058937072754
9 1.343662e+03 1.478699e+00
* time: 0.42966198921203613
10 1.343626e+03 9.575005e-01
* time: 0.47130894660949707
11 1.343609e+03 8.509968e-01
* time: 0.5185987949371338
12 1.343589e+03 7.964671e-01
* time: 0.560128927230835
13 1.343567e+03 8.202459e-01
* time: 0.6054987907409668
14 1.343550e+03 8.133359e-01
* time: 0.6489419937133789
15 1.343542e+03 6.865506e-01
* time: 0.6892659664154053
16 1.343538e+03 3.869567e-01
* time: 0.7374029159545898
17 1.343534e+03 2.805019e-01
* time: 0.7808268070220947
18 1.343531e+03 3.271442e-01
* time: 0.8291149139404297
19 1.343529e+03 4.584302e-01
* time: 0.8754768371582031
20 1.343527e+03 3.951940e-01
* time: 0.9258267879486084
21 1.343525e+03 1.928385e-01
* time: 0.9726529121398926
22 1.343524e+03 1.958575e-01
* time: 1.044428825378418
23 1.343523e+03 2.008844e-01
* time: 1.1108808517456055
24 1.343522e+03 1.636364e-01
* time: 1.188107967376709
25 1.343522e+03 1.041929e-01
* time: 1.2528178691864014
26 1.343521e+03 7.417497e-02
* time: 1.3158729076385498
27 1.343521e+03 7.297961e-02
* time: 1.3625528812408447
28 1.343521e+03 8.109591e-02
* time: 1.4066669940948486
29 1.343520e+03 7.067080e-02
* time: 1.4613728523254395
30 1.343520e+03 5.088025e-02
* time: 1.515307903289795
31 1.343520e+03 4.980085e-02
* time: 1.5746610164642334
32 1.343520e+03 4.778940e-02
* time: 1.6276500225067139
33 1.343520e+03 5.667067e-02
* time: 1.6849169731140137
34 1.343520e+03 5.825591e-02
* time: 1.7360799312591553
35 1.343519e+03 5.354660e-02
* time: 1.793224811553955
36 1.343519e+03 5.300792e-02
* time: 1.845956802368164
37 1.343519e+03 4.011720e-02
* time: 1.9048008918762207
38 1.343519e+03 3.606197e-02
* time: 1.9570398330688477
39 1.343519e+03 3.546034e-02
* time: 2.0124459266662598
40 1.343519e+03 3.525307e-02
* time: 2.053234815597534
41 1.343519e+03 3.468091e-02
* time: 2.0985569953918457
42 1.343519e+03 3.313732e-02
* time: 2.144019842147827
43 1.343518e+03 4.524162e-02
* time: 2.184858798980713
44 1.343518e+03 5.769309e-02
* time: 2.228792905807495
45 1.343518e+03 5.716613e-02
* time: 2.2656078338623047
46 1.343517e+03 4.600797e-02
* time: 2.308400869369507
47 1.343517e+03 3.221948e-02
* time: 2.3502368927001953
48 1.343517e+03 2.610758e-02
* time: 2.395941972732544
49 1.343517e+03 2.120270e-02
* time: 2.4372458457946777
50 1.343517e+03 1.887916e-02
* time: 2.48282790184021
51 1.343517e+03 1.229271e-02
* time: 2.5237619876861572
52 1.343517e+03 4.778802e-03
* time: 2.5652267932891846
53 1.343517e+03 2.158460e-03
* time: 2.601778984069824
54 1.343517e+03 2.158460e-03
* time: 2.672954797744751
55 1.343517e+03 2.158460e-03
* time: 2.752969980239868
FittedPumasModel
Successful minimization: true
Likelihood approximation: FOCE
Likelihood Optimizer: BFGS
Dynamical system type: Closed form
Log-likelihood value: -1343.5173
Number of subjects: 18
Number of parameters: Fixed Optimized
0 13
Observation records: Active Missing
dv: 270 0
Total: 270 0
--------------------
Estimate
--------------------
tvcl 2.7287
tvvc 70.681
tvvp 47.396
tvq 4.0573
tvka 0.98725
dwtcl 0.58351
dwtq 1.176
Ω₁,₁ 0.21435
Ω₂,₂ 0.050415
Ω₃,₃ 0.42468
Ω₄,₄ 0.040356
Ω₅,₅ 0.045987
σₚ 0.097904
--------------------
Now we are ready to perform LRT with lrtest
:
= lrtest(base_fit, covariate_fit) mytest
Statistic: 59.3
Degrees of freedom: 2
P-value: 0.0
The degrees of freedom of the underlying \(\chi^2\) distribution is \(2\), i.e. we have two additional parameters in the model under \(H_a\); and the test statistic is \(59.3\).
The \(p\)-value corresponding for the test statistic and degree of freedom is very close to \(0\). It prints as 0.0
, but we can access the value with the pvalue
function:
pvalue(mytest)
1.3554737256701043e-13
This indicates strong evidence against the base_model
(i.e. model under \(H_0\)) and in favor of the covariate_model
(i.e. model under \(H_a\)).
3 Model Selection Algorithms
There are several model selection techniques that take into account covariate selection. In the statistical literature, the reader can check Thayer (1990), and for the pharmacometric context, the reader can check Hutmacher & Kowalski (2015) and Jonsson & Karlsson (1998).
Pumas currently only implements the Stepwise Covariate Model (SCM). SCM, also known as stepwise procedures, is a model building strategy that is used to identify the best covariate model for a given dataset by a series of iterations (Hutmacher & Kowalski, 2015). Broadly, there are two main types of SCM:
- Forward Selection (FS)
- Backward Elimination (BE)
We will be covering these in detail in a new set of tutorials, please check tutorials.pumas.ai.
4 References
Akaike, H. (1973). Information theory and the extension of the maximum likelihood principle. Proceedings of the Second International Symposium on Information Theory.
Hutmacher, M. M., & Kowalski, K. G. (2015). Covariate selection in pharmacometric analyses: a review of methods. British journal of clinical pharmacology, 79(1), 132–147. https://doi.org/10.1111/bcp.12451
Jonsson, E. N., & Karlsson, M. O. (1998). Automated covariate model building within NONMEM. Pharmaceutical research, 15(9), 1463–1468. https://doi.org/10.1023/a:1011970125687
Schwarz, Gideon E. (1978). Estimating the dimension of a model. Annals of Statistics, 6 (2): 461–464, doi:10.1214/aos/1176344136.
Thayer, J. D. (1990). Implementing Variable Selection Techniques in Regression. ERIC.