A Comprehensive Introduction to Pumas

Authors

Vijay Ivaturi

Jose Storopoli

This tutorial provides a comprehensive introduction to a modeling and simulation workflow in Pumas. The idea is not to get into the details of Pumas specifics, but instead provide a narrative on the lines of a regular workflow in our day-to-day work, with brevity where required to allow a broad overview. Wherever possible, cross-references will be provided to documentation and detailed examples that provide deeper insight into a particular topic.

As part of this workflow, you will be introduced to various aspects such as:

  1. Data wrangling in Julia
  2. Exploratory analysis in Julia
  3. Continuous data non-linear mixed effects modeling in Pumas
  4. Model comparison routines, post-processing, validation etc.

1 The Study and Design

CTMNopain is a novel anti-inflammatory agent under preliminary investigation. A dose-ranging trial was conducted comparing placebo with 3 doses of CTMNopain (5mg, 20mg and 80 mg QD). The maximum tolerated dose is 160 mg per day. Plasma concentrations (mg/L) of the drug were measured at 0, 0.5, 1, 1.5, 2, 2.5, 3-8 hours.

Pain score (0=no pain, 1=mild, 2=moderate, 3=severe) were obtained at time points when plasma concentration was collected. A pain score of 2 or more is considered as no pain relief.

The subjects can request for remedication if pain relief is not achieved after 2 hours post dose. Some subjects had remedication before 2 hours if they were not able to bear the pain. The time to remedication and the remedication status is available for subjects.

The pharmacokinetic dataset can be accessed using PharmaDatasets.jl.

2 Setup

2.1 Load libraries

These libraries provide the workhorse functionality in the Pumas ecosystem:

using Pumas
using PumasUtilities
using NCA
using NCAUtilities

In addition, libraries below are good add-on’s that provide ancillary functionality:

using GLM: lm, @formula
using Random
using CSV
using DataFramesMeta
using CairoMakie
using PharmaDatasets

2.2 Data Wrangling

We start by reading in the dataset and making some quick summaries.

Tip

If you want to learn more about data wrangling, don’t forget to check our Data Wrangling in Julia tutorials!

pkpain_df = dataset("pk_painrelief")
first(pkpain_df, 5)
5×7 DataFrame
Row Subject Time Conc PainRelief PainScore RemedStatus Dose
Int64 Float64 Float64 Int64 Int64 Int64 String7
1 1 0.0 0.0 0 3 1 20 mg
2 1 0.5 1.15578 1 1 0 20 mg
3 1 1.0 1.37211 1 0 0 20 mg
4 1 1.5 1.30058 1 0 0 20 mg
5 1 2.0 1.19195 1 1 0 20 mg

Let’s filter out the placebo data as we don’t need that for the PK analysis.

pkpain_noplb_df = @rsubset pkpain_df :Dose != "Placebo";
first(pkpain_noplb_df, 5)
5×7 DataFrame
Row Subject Time Conc PainRelief PainScore RemedStatus Dose
Int64 Float64 Float64 Int64 Int64 Int64 String7
1 1 0.0 0.0 0 3 1 20 mg
2 1 0.5 1.15578 1 1 0 20 mg
3 1 1.0 1.37211 1 0 0 20 mg
4 1 1.5 1.30058 1 0 0 20 mg
5 1 2.0 1.19195 1 1 0 20 mg

3 Analysis

3.1 Non-compartmental analysis

Let’s begin by performing a quick NCA of the concentration time profiles and view the exposure changes across doses. The input data specification for NCA analysis requires the presence of a :route column and an :amt column that specifies the dose. So, let’s add that in:

@rtransform! pkpain_noplb_df begin
    :route = "ev"
    :Dose = parse(Int, chop(:Dose; tail = 3))
end

We also need to create an :amt column:

@rtransform! pkpain_noplb_df :amt = :Time == 0 ? :Dose : missing

Now, we map the data variables to the read_nca function that prepares the data for NCA analysis.

pkpain_nca = read_nca(
    pkpain_noplb_df;
    id = :Subject,
    time = :Time,
    amt = :amt,
    observations = :Conc,
    group = [:Dose],
    route = :route,
)
NCAPopulation (120 subjects):
  Group: [["Dose" => 5], ["Dose" => 20], ["Dose" => 80]]
  Number of missing observations: 0
  Number of blq observations: 0

Now that we mapped the data in, let’s visualize the concentration vs time plots for a few individuals. When paginate is set to true, a vector of plots are returned and below we display the first element with 9 individuals.

f = observations_vs_time(
    pkpain_nca;
    paginate = true,
    axis = (; xlabel = "Time (hr)", ylabel = "CTMNoPain Concentration (ng/mL)"),
    facet = (; combinelabels = true),
)
f[1]

An observations versus time profile for all subjects

Observations versus Time

or you can view the summary curves by dose group as passed in to the group argument in read_nca

summary_observations_vs_time(
    pkpain_nca,
    figure = (; fontsize = 22, size = (800, 1000)),
    color = "black",
    linewidth = 3,
    axis = (; xlabel = "Time (hr)", ylabel = "CTMX Concentration (μg/mL)"),
    facet = (; combinelabels = true, linkaxes = true),
)

An observations versus time profile for all subjects in a summarized manner

Summary Observations versus Time

A full NCA Report is now obtained for completeness purposes using the run_nca function, but later we will only extract a couple of key metrics of interest.

pk_nca = run_nca(pkpain_nca; sigdigits = 3)

We can look at the NCA fits for some subjects. Here f is a vector or figures. We’ll showcase the first image by indexing f:

f = subject_fits(
    pk_nca,
    paginate = true,
    axis = (; xlabel = "Time (hr)", ylabel = "CTMX Concentration (μg/mL)"),
    facet = (; combinelabels = true, linkaxes = true),
)
f[1]

Trend plot with observations for all individual subjects over time

Subject Fits

As CTMNopain’s effect maybe mainly related to maximum concentration (cmax) or area under the curve (auc), we present some summary statistics using the summarize function from NCA.

strata = [:Dose]
1-element Vector{Symbol}:
 :Dose
params = [:cmax, :aucinf_obs]
2-element Vector{Symbol}:
 :cmax
 :aucinf_obs
output = summarize(pk_nca; stratify_by = strata, parameters = params)
6×10 DataFrame
Row Dose parameters numsamples minimum maximum mean std geomean geostd geomeanCV
Int64 String Int64 Float64 Float64 Float64 Float64 Float64 Float64 Float64
1 5 cmax 40 0.19 0.539 0.356075 0.0884129 0.345104 1.2932 26.1425
2 5 aucinf_obs 40 0.914 3.4 1.5979 0.490197 1.53373 1.32974 29.0868
3 20 cmax 40 0.933 2.7 1.4737 0.361871 1.43408 1.2633 23.6954
4 20 aucinf_obs 40 2.77 14.1 6.377 2.22239 6.02031 1.41363 35.6797
5 80 cmax 40 3.3 8.47 5.787 1.31957 5.64164 1.25757 23.2228
6 80 aucinf_obs 40 13.7 49.1 29.5 8.68984 28.2954 1.34152 30.0258

The statistics printed above are the default, but you can pass in your own statistics using the stats = [] argument to the summarize function.

We can look at a few parameter distribution plots.

parameters_vs_group(
    pk_nca,
    parameter = :cmax,
    axis = (; xlabel = "Dose (mg)", ylabel = "Cₘₐₓ (ng/mL)"),
    figure = (; fontsize = 18),
)

A violin plot for the Cmax distribution for each dose group

Cmax for each Dose Group

Dose normalized PK parameters, cmax and aucinf were essentially dose proportional between for 5 mg, 20 mg and 80 mg doses. You can perform a simple regression to check the impact of dose on cmax:

dp = NCA.DoseLinearityPowerModel(pk_nca, :cmax; level = 0.9)
Dose Linearity Power Model
Variable: cmax
Model: log(cmax) ~ log(α) + β × log(dose)
────────────────────────────────────
   Estimate  low CI 90%  high CI 90%
────────────────────────────────────
β   1.00775     0.97571       1.0398
────────────────────────────────────

Here’s a visualization for the dose linearity using a power model for cmax:

power_model(dp)

A dose linearity power model plot for Cmax

Dose Linearity Plot

We can also visualize a dose proportionality results with respect to a specific endpoint in a NCA Report; for example cmax and aucinf_obs:

dose_vs_dose_normalized(pk_nca, :cmax)

A dose proportionality plot for Cmax

Dose Proportionality Plot
dose_vs_dose_normalized(pk_nca, :aucinf_obs)

A dose proportionality plot for AUC

Dose Proportionality Plot

Based on visual inspection of the concentration time profiles as seen earlier, CTMNopain exhibited monophasic decline, and perhaps a one compartment model best fits the PK data.

3.2 Pharmacokinetic modeling

As seen from the plots above, the concentrations decline monoexponentially. We will evaluate both one and two compartment structural models to assess best fit. Further, different residual error models will also be tested.

We will use the results from NCA to provide us good initial estimates.

3.2.1 Data preparation for modeling

PumasNDF requires the presence of :evid and :cmt columns in the dataset.

@rtransform! pkpain_noplb_df begin
    :evid = :Time == 0 ? 1 : 0
    :cmt = :Time == 0 ? 1 : 2
    :cmt2 = 1 # for zero order absorption
end

Further, observations at time of dosing, i.e., when evid = 1 have to be missing

@rtransform! pkpain_noplb_df :Conc = :evid == 1 ? missing : :Conc

The dataframe will now be converted to a Population using read_pumas. Note that both observations and covariates are required to be an array even if it is one element.

pkpain_noplb = read_pumas(
    pkpain_noplb_df;
    id = :Subject,
    time = :Time,
    amt = :amt,
    observations = [:Conc],
    covariates = [:Dose],
    evid = :evid,
    cmt = :cmt,
)
Population
  Subjects: 120
  Covariates: Dose
  Observations: Conc

Now that the data is transformed to a Population of subjects, we can explore different models.

3.2.2 One-compartment model

Note

If you are not familiar yet with the @model blocks and syntax, please check our documentation.

pk_1cmp = @model begin

    @metadata begin
        desc = "One Compartment Model"
        timeu = u"hr"
    end

    @param begin
        """
        Clearance (L/hr)
        """
        tvcl  RealDomain(; lower = 0, init = 3.2)
        """
        Volume (L)
        """
        tvv  RealDomain(; lower = 0, init = 16.4)
        """
        Absorption rate constant (h-1)
        """
        tvka  RealDomain(; lower = 0, init = 3.8)
        """
          - ΩCL
          - ΩVc
          - ΩKa
        """
        Ω  PDiagDomain(init = [0.04, 0.04, 0.04])
        """
        Proportional RUV
        """
        σ_p  RealDomain(; lower = 0.0001, init = 0.2)
    end

    @random begin
        η ~ MvNormal(Ω)
    end

    @covariates begin
        """
        Dose (mg)
        """
        Dose
    end

    @pre begin
        CL = tvcl * exp(η[1])
        Vc = tvv * exp(η[2])
        Ka = tvka * exp(η[3])
    end

    @dynamics Depots1Central1

    @derived begin
        cp := @. Central / Vc
        """
        CTMx Concentration (ng/mL)
        """
        Conc ~ @. Normal(cp, abs(cp) * σ_p)
    end

end
┌ Warning: Covariate Dose is not used in the model.
└ @ Pumas ~/_work/PumasTutorials.jl/PumasTutorials.jl/custom_julia_depot/packages/Pumas/aZRyj/src/dsl/model_macro.jl:2856
PumasModel
  Parameters: tvcl, tvv, tvka, Ω, σ_p
  Random effects: η
  Covariates: Dose
  Dynamical system variables: Depot, Central
  Dynamical system type: Closed form
  Derived: Conc
  Observed: Conc
Tip

Note that the local assignment := can be used to define intermediate statements that will not be carried outside of the block. This means that all the resulting data workflows from this model will not contain the intermediate variables defined with :=. We use this when we want to suppress the variable from any further output.

The idea behind := is for performance reasons. If you are not carrying the variable defined with := outside of the block, then it is not necessary to store it in the resulting data structures. Not only will your model run faster, but the resulting data structures will also be smaller.

Before going to fit the model, let’s evaluate some helpful steps via simulation to check appropriateness of data and model

# zero out the random effects
etas = zero_randeffs(pk_1cmp, init_params(pk_1cmp), pkpain_noplb)

Above, we are generating a vector of η’s of the same length as the number of subjects to zero out the random effects. We do this as we are evaluating the trajectories of the concentrations at the initial set of parameters at a population level. Other helper functions here are sample_randeffs and init_randeffs. Please refer to the documentation.

simpk_iparams = simobs(pk_1cmp, pkpain_noplb, init_params(pk_1cmp), etas)
Simulated population (Vector{<:Subject})
  Simulated subjects: 120
  Simulated variables: Conc
sim_plot(
    pk_1cmp,
    simpk_iparams;
    observations = [:Conc],
    figure = (; fontsize = 18),
    axis = (;
        xlabel = "Time (hr)",
        ylabel = "Observed/Predicted \n CTMx Concentration (ng/mL)",
    ),
)

A simulated observations versus time plot overlaid with the scatter plot of the observed observations

Simulated Observations Plot

Our NCA based initial guess on the parameters seem to work well.

Lets change the initial estimate of a couple of the parameters to evaluate the sensitivity.

pkparam = (; init_params(pk_1cmp)..., tvka = 2, tvv = 10)
(tvcl = 3.2,
 tvv = 10,
 tvka = 2,
 Ω = [0.04 0.0 0.0; 0.0 0.04 0.0; 0.0 0.0 0.04],
 σ_p = 0.2,)
simpk_changedpars = simobs(pk_1cmp, pkpain_noplb, pkparam, etas)
Simulated population (Vector{<:Subject})
  Simulated subjects: 120
  Simulated variables: Conc
sim_plot(
    pk_1cmp,
    simpk_changedpars;
    observations = [:Conc],
    figure = (; fontsize = 18),
    axis = (
        xlabel = "Time (hr)",
        ylabel = "Observed/Predicted \n CTMx Concentration (ng/mL)",
    ),
)

A simulated observations versus time plot overlaid with the scatter plot of the observed observations

Simulated Observations Plot

Changing the tvka and decreasing the tvv seemed to make an impact and observations go through the simulated lines.

To get a quick ballpark estimate of your PK parameters, we can do a NaivePooled analysis.

3.2.2.1 NaivePooled
pkfit_np = fit(pk_1cmp, pkpain_noplb, init_params(pk_1cmp), NaivePooled(); omegas = (:Ω,))
[ Info: Checking the initial parameter values.
[ Info: The initial negative log likelihood and its gradient are finite. Check passed.
Iter     Function value   Gradient norm 
     0     7.744356e+02     3.715711e+03
 * time: 0.022433996200561523
     1     2.343899e+02     1.747348e+03
 * time: 1.001481056213379
     2     9.696232e+01     1.198088e+03
 * time: 1.0043270587921143
     3    -7.818699e+01     5.538151e+02
 * time: 1.0062170028686523
     4    -1.234803e+02     2.462514e+02
 * time: 1.008086919784546
     5    -1.372888e+02     2.067458e+02
 * time: 1.010080099105835
     6    -1.410579e+02     1.162950e+02
 * time: 1.0121159553527832
     7    -1.434754e+02     5.632816e+01
 * time: 1.0140111446380615
     8    -1.453401e+02     7.859270e+01
 * time: 1.0158779621124268
     9    -1.498185e+02     1.455606e+02
 * time: 1.0177860260009766
    10    -1.534371e+02     1.303682e+02
 * time: 1.0197601318359375
    11    -1.563557e+02     5.975474e+01
 * time: 1.0218760967254639
    12    -1.575052e+02     9.308611e+00
 * time: 1.0238909721374512
    13    -1.579357e+02     1.234484e+01
 * time: 1.02577805519104
    14    -1.581874e+02     7.478196e+00
 * time: 1.0275850296020508
    15    -1.582981e+02     2.027162e+00
 * time: 1.0293891429901123
    16    -1.583375e+02     5.578262e+00
 * time: 1.031135082244873
    17    -1.583556e+02     4.727050e+00
 * time: 1.0328409671783447
    18    -1.583644e+02     2.340173e+00
 * time: 1.0348501205444336
    19    -1.583680e+02     7.738100e-01
 * time: 1.036916971206665
    20    -1.583696e+02     3.300689e-01
 * time: 1.039703130722046
    21    -1.583704e+02     3.641985e-01
 * time: 1.0413639545440674
    22    -1.583707e+02     4.365901e-01
 * time: 1.0434410572052002
    23    -1.583709e+02     3.887800e-01
 * time: 1.0451350212097168
    24    -1.583710e+02     2.766977e-01
 * time: 1.0471839904785156
    25    -1.583710e+02     1.758029e-01
 * time: 1.049255132675171
    26    -1.583710e+02     1.133947e-01
 * time: 1.0507850646972656
    27    -1.583710e+02     7.922544e-02
 * time: 1.0527489185333252
    28    -1.583710e+02     5.954998e-02
 * time: 1.0547010898590088
    29    -1.583710e+02     4.157079e-02
 * time: 1.0562341213226318
    30    -1.583710e+02     4.295447e-02
 * time: 1.058223009109497
    31    -1.583710e+02     5.170753e-02
 * time: 1.0602819919586182
    32    -1.583710e+02     2.644383e-02
 * time: 1.0624330043792725
    33    -1.583710e+02     4.548993e-03
 * time: 1.0650079250335693
    34    -1.583710e+02     2.501804e-02
 * time: 1.0675570964813232
    35    -1.583710e+02     3.763440e-02
 * time: 1.0695810317993164
    36    -1.583710e+02     3.206026e-02
 * time: 1.0711669921875
    37    -1.583710e+02     1.003698e-02
 * time: 1.0731761455535889
    38    -1.583710e+02     2.209089e-02
 * time: 1.0751590728759766
    39    -1.583710e+02     4.954172e-03
 * time: 1.0771400928497314
    40    -1.583710e+02     1.609373e-02
 * time: 1.0791940689086914
    41    -1.583710e+02     1.579802e-02
 * time: 1.0811691284179688
    42    -1.583710e+02     1.014113e-03
 * time: 1.08315110206604
    43    -1.583710e+02     6.050644e-03
 * time: 1.0856380462646484
    44    -1.583710e+02     1.354412e-02
 * time: 1.0872550010681152
    45    -1.583710e+02     4.473248e-03
 * time: 1.0892341136932373
    46    -1.583710e+02     4.644735e-03
 * time: 1.0912070274353027
    47    -1.583710e+02     9.829910e-03
 * time: 1.0931861400604248
    48    -1.583710e+02     1.047561e-03
 * time: 1.0947351455688477
    49    -1.583710e+02     8.366895e-03
 * time: 1.0967061519622803
    50    -1.583710e+02     7.879055e-04
 * time: 1.0986759662628174
FittedPumasModel

Successful minimization:                      true

Likelihood approximation:              NaivePooled
Likelihood Optimizer:                         BFGS
Dynamical system type:                 Closed form

Log-likelihood value:                    158.37103
Number of subjects:                            120
Number of parameters:         Fixed      Optimized
                                  1              6
Observation records:         Active        Missing
    Conc:                      1320              0
    Total:                     1320              0

------------------
         Estimate
------------------
tvcl      3.0054
tvv      14.089
tvka     44.228
Ω₁,₁      0.0
Ω₂,₂      0.0
Ω₃,₃      0.0
σ_p       0.32999
------------------
coefficients_table(pkfit_np)
7×3 DataFrame
Row Parameter Description Estimate
String Abstract… Float64
1 tvcl Clearance (L/hr)\n 3.005
2 tvv Volume (L)\n 14.089
3 tvka Absorption rate constant (h-1)\n 44.228
4 Ω₁,₁ ΩCL 0.0
5 Ω₂,₂ ΩVc 0.0
6 Ω₃,₃ ΩKa 0.0
7 σ_p Proportional RUV\n 0.33

The final estimates from the NaivePooled approach seem reasonably close to our initial guess from NCA, except for the tvka parameter. We will stick with our initial guess.

One way to be cautious before going into a complete fitting routine is to evaluate the likelihood of the individual subjects given the initial parameter values and see if any subject(s) pops out as unreasonable. There are a few ways of doing this:

  • check the loglikelihood subject wise
  • check if there any influential subjects

Below, we are basically checking if the initial estimates for any subject are way off that we are unable to compute the initial loglikelihood.

lls = []
for subj in pkpain_noplb
    push!(lls, loglikelihood(pk_1cmp, subj, pkparam, FOCE()))
end
# the plot below is using native CairoMakie `hist`
hist(lls; bins = 10, normalization = :none, color = (:black, 0.5))

A histogram of the individual loglikelihoods

Histogram of Loglikelihoods

The distribution of the loglikelihood’s suggest no extreme outliers.

A more convenient way is to use the findinfluential function that provides a list of k top influential subjects by showing the normalized (minus) loglikelihood for each subject. As you can see below, the minus loglikelihood in the range of 16 agrees with the histogram plotted above.

influential_subjects = findinfluential(pk_1cmp, pkpain_noplb, pkparam, FOCE())
120-element Vector{@NamedTuple{id::String, nll::Float64}}:
 (id = "148", nll = 16.65965885684477)
 (id = "135", nll = 16.648985190076335)
 (id = "156", nll = 15.959069556607496)
 (id = "159", nll = 15.441218240496484)
 (id = "149", nll = 14.71513464411951)
 (id = "88", nll = 13.09709837464614)
 (id = "16", nll = 12.98228052193144)
 (id = "61", nll = 12.652182902303679)
 (id = "71", nll = 12.500330088085505)
 (id = "59", nll = 12.241510254805235)
 ⋮
 (id = "57", nll = -22.79767423253431)
 (id = "93", nll = -22.836900711478208)
 (id = "12", nll = -23.007742339519247)
 (id = "123", nll = -23.292751843079234)
 (id = "41", nll = -23.425412534960515)
 (id = "99", nll = -23.535214841901112)
 (id = "29", nll = -24.025959868383083)
 (id = "52", nll = -24.164757842493685)
 (id = "24", nll = -25.57209232565845)
3.2.2.2 FOCE

Now that we have a good handle on our data, lets go ahead and fit a population model with FOCE:

pkfit_1cmp = fit(pk_1cmp, pkpain_noplb, pkparam, FOCE(); constantcoef = (; tvka = 2))
[ Info: Checking the initial parameter values.
[ Info: The initial negative log likelihood and its gradient are finite. Check passed.
Iter     Function value   Gradient norm 
     0    -5.935351e+02     5.597318e+02
 * time: 7.605552673339844e-5
     1    -7.022088e+02     1.707063e+02
 * time: 0.3131880760192871
     2    -7.314067e+02     2.903269e+02
 * time: 0.5381979942321777
     3    -8.520591e+02     2.285888e+02
 * time: 0.6782650947570801
     4    -1.120191e+03     3.795410e+02
 * time: 0.9890539646148682
     5    -1.178784e+03     2.323978e+02
 * time: 1.1938450336456299
     6    -1.218320e+03     9.699907e+01
 * time: 1.324463129043579
     7    -1.223641e+03     5.862105e+01
 * time: 1.465644121170044
     8    -1.227620e+03     1.831403e+01
 * time: 1.6084120273590088
     9    -1.228381e+03     2.132323e+01
 * time: 1.7682039737701416
    10    -1.230098e+03     2.921228e+01
 * time: 1.888746976852417
    11    -1.230854e+03     2.029662e+01
 * time: 2.0225961208343506
    12    -1.231116e+03     5.229097e+00
 * time: 2.150954008102417
    13    -1.231179e+03     1.689232e+00
 * time: 2.3053860664367676
    14    -1.231187e+03     1.215379e+00
 * time: 2.4097530841827393
    15    -1.231188e+03     2.770380e-01
 * time: 2.5148589611053467
    16    -1.231188e+03     1.636653e-01
 * time: 2.609405994415283
    17    -1.231188e+03     2.701133e-01
 * time: 2.745171070098877
    18    -1.231188e+03     3.163363e-01
 * time: 2.8302531242370605
    19    -1.231188e+03     1.505149e-01
 * time: 2.9132330417633057
    20    -1.231188e+03     2.484999e-02
 * time: 2.997634172439575
    21    -1.231188e+03     8.446863e-04
 * time: 3.0766701698303223
FittedPumasModel

Successful minimization:                      true

Likelihood approximation:                     FOCE
Likelihood Optimizer:                         BFGS
Dynamical system type:                 Closed form

Log-likelihood value:                     1231.188
Number of subjects:                            120
Number of parameters:         Fixed      Optimized
                                  1              6
Observation records:         Active        Missing
    Conc:                      1320              0
    Total:                     1320              0

-------------------
         Estimate
-------------------
tvcl      3.1642
tvv      13.288
tvka      2.0
Ω₁,₁      0.08494
Ω₂,₂      0.048568
Ω₃,₃      5.5811
σ_p       0.10093
-------------------
infer(pkfit_1cmp)
[ Info: Calculating: variance-covariance matrix.
[ Info: Done.
Asymptotic inference results using sandwich estimator

Successful minimization:                      true

Likelihood approximation:                     FOCE
Likelihood Optimizer:                         BFGS
Dynamical system type:                 Closed form

Log-likelihood value:                     1231.188
Number of subjects:                            120
Number of parameters:         Fixed      Optimized
                                  1              6
Observation records:         Active        Missing
    Conc:                      1320              0
    Total:                     1320              0

-------------------------------------------------------------------
        Estimate           SE                     95.0% C.I.
-------------------------------------------------------------------
tvcl     3.1642          0.08662          [ 2.9944  ;  3.334   ]
tvv     13.288           0.27481          [12.749   ; 13.827   ]
tvka     2.0             NaN              [  NaN    ;   NaN      ]
Ω₁,₁     0.08494         0.011022         [ 0.063338;  0.10654 ]
Ω₂,₂     0.048568        0.0063502        [ 0.036122;  0.061014]
Ω₃,₃     5.5811          1.2188           [ 3.1922  ;  7.97    ]
σ_p      0.10093         0.0057196        [ 0.089718;  0.11214 ]
-------------------------------------------------------------------

Notice that tvka is fixed to 2 as we don’t have a lot of information before tmax. From the results above, we see that the parameter precision for this model is reasonable.

3.2.3 Two-compartment model

Just to be sure, let’s fit a 2-compartment model and evaluate:

pk_2cmp = @model begin

    @param begin
        """
        Clearance (L/hr)
        """
        tvcl  RealDomain(; lower = 0, init = 3.2)
        """
        Central Volume (L)
        """
        tvv  RealDomain(; lower = 0, init = 16.4)
        """
        Peripheral Volume (L)
        """
        tvvp  RealDomain(; lower = 0, init = 10)
        """
        Distributional Clearance (L/hr)
        """
        tvq  RealDomain(; lower = 0, init = 2)
        """
        Absorption rate constant (h-1)
        """
        tvka  RealDomain(; lower = 0, init = 1.3)
        """
          - ΩCL
          - ΩVc
          - ΩKa
          - ΩVp
          - ΩQ
        """
        Ω  PDiagDomain(init = [0.04, 0.04, 0.04, 0.04, 0.04])
        """
        Proportional RUV
        """
        σ_p  RealDomain(; lower = 0.0001, init = 0.2)
    end

    @random begin
        η ~ MvNormal(Ω)
    end

    @covariates begin
        """
        Dose (mg)
        """
        Dose
    end

    @pre begin
        CL = tvcl * exp(η[1])
        Vc = tvv * exp(η[2])
        Ka = tvka * exp(η[3])
        Vp = tvvp * exp(η[4])
        Q = tvq * exp(η[5])
    end

    @dynamics Depots1Central1Periph1

    @derived begin
        cp := @. Central / Vc
        """
        CTMx Concentration (ng/mL)
        """
        Conc ~ @. Normal(cp, cp * σ_p)
    end
end
┌ Warning: Covariate Dose is not used in the model.
└ @ Pumas ~/_work/PumasTutorials.jl/PumasTutorials.jl/custom_julia_depot/packages/Pumas/aZRyj/src/dsl/model_macro.jl:2856
PumasModel
  Parameters: tvcl, tvv, tvvp, tvq, tvka, Ω, σ_p
  Random effects: η
  Covariates: Dose
  Dynamical system variables: Depot, Central, Peripheral
  Dynamical system type: Closed form
  Derived: Conc
  Observed: Conc
3.2.3.1 FOCE
pkfit_2cmp =
    fit(pk_2cmp, pkpain_noplb, init_params(pk_2cmp), FOCE(); constantcoef = (; tvka = 2))
[ Info: Checking the initial parameter values.
[ Info: The initial negative log likelihood and its gradient are finite. Check passed.
Iter     Function value   Gradient norm 
     0    -6.302369e+02     1.021050e+03
 * time: 9.608268737792969e-5
     1    -9.197817e+02     9.927951e+02
 * time: 0.4063079357147217
     2    -1.372640e+03     2.054986e+02
 * time: 0.7915420532226562
     3    -1.446326e+03     1.543987e+02
 * time: 1.1256020069122314
     4    -1.545570e+03     1.855028e+02
 * time: 1.5302700996398926
     5    -1.581449e+03     1.713157e+02
 * time: 2.047740936279297
     6    -1.639433e+03     1.257382e+02
 * time: 2.4201691150665283
     7    -1.695964e+03     7.450539e+01
 * time: 2.7611329555511475
     8    -1.722243e+03     5.961044e+01
 * time: 3.1375930309295654
     9    -1.736883e+03     7.320921e+01
 * time: 3.494723081588745
    10    -1.753547e+03     7.501938e+01
 * time: 3.8869619369506836
    11    -1.764053e+03     6.185661e+01
 * time: 4.272141933441162
    12    -1.778991e+03     4.831033e+01
 * time: 4.683020114898682
    13    -1.791492e+03     4.943278e+01
 * time: 5.12828803062439
    14    -1.799847e+03     2.871410e+01
 * time: 5.488668918609619
    15    -1.805374e+03     7.520791e+01
 * time: 5.909689903259277
    16    -1.816260e+03     2.990621e+01
 * time: 6.248203992843628
    17    -1.818252e+03     2.401915e+01
 * time: 6.598495960235596
    18    -1.822988e+03     2.587225e+01
 * time: 6.924659967422485
    19    -1.824653e+03     1.550517e+01
 * time: 7.265336990356445
    20    -1.826074e+03     1.788927e+01
 * time: 7.583723068237305
    21    -1.826821e+03     1.888389e+01
 * time: 7.921534061431885
    22    -1.827900e+03     1.432840e+01
 * time: 8.236469030380249
    23    -1.828511e+03     9.422041e+00
 * time: 8.578222036361694
    24    -1.828754e+03     5.363442e+00
 * time: 8.954122066497803
    25    -1.828862e+03     4.916159e+00
 * time: 9.241298913955688
    26    -1.829007e+03     4.695755e+00
 * time: 9.609203100204468
    27    -1.829358e+03     1.090249e+01
 * time: 9.915071964263916
    28    -1.829830e+03     1.451325e+01
 * time: 10.270534038543701
    29    -1.830201e+03     1.108715e+01
 * time: 10.58910608291626
    30    -1.830360e+03     2.891223e+00
 * time: 10.936537981033325
    31    -1.830390e+03     1.695557e+00
 * time: 11.241647005081177
    32    -1.830404e+03     1.601712e+00
 * time: 11.556674003601074
    33    -1.830432e+03     2.823385e+00
 * time: 11.851758003234863
    34    -1.830477e+03     4.060617e+00
 * time: 12.184998989105225
    35    -1.830528e+03     5.133499e+00
 * time: 12.503180980682373
    36    -1.830593e+03     2.830970e+00
 * time: 12.854108095169067
    37    -1.830616e+03     3.342835e+00
 * time: 13.17300009727478
    38    -1.830622e+03     3.708884e+00
 * time: 13.529642105102539
    39    -1.830625e+03     2.062934e+00
 * time: 13.867832899093628
    40    -1.830627e+03     1.278569e+00
 * time: 14.118606090545654
    41    -1.830628e+03     1.832895e+00
 * time: 14.451056957244873
    42    -1.830628e+03     3.768840e-01
 * time: 14.701940059661865
    43    -1.830629e+03     3.152895e-01
 * time: 14.998039960861206
    44    -1.830630e+03     4.871060e-01
 * time: 15.258908033370972
    45    -1.830630e+03     3.110627e-01
 * time: 15.54232406616211
    46    -1.830630e+03     2.687758e-02
 * time: 15.832128047943115
    47    -1.830630e+03     4.694018e-03
 * time: 16.060713052749634
    48    -1.830630e+03     8.272969e-03
 * time: 16.30059003829956
    49    -1.830630e+03     8.249151e-03
 * time: 16.561913013458252
    50    -1.830630e+03     8.245562e-03
 * time: 16.913420915603638
    51    -1.830630e+03     8.240030e-03
 * time: 17.246982097625732
    52    -1.830630e+03     8.240030e-03
 * time: 17.631911039352417
    53    -1.830630e+03     8.240030e-03
 * time: 18.02180790901184
FittedPumasModel

Successful minimization:                      true

Likelihood approximation:                     FOCE
Likelihood Optimizer:                         BFGS
Dynamical system type:                 Closed form

Log-likelihood value:                    1830.6304
Number of subjects:                            120
Number of parameters:         Fixed      Optimized
                                  1             10
Observation records:         Active        Missing
    Conc:                      1320              0
    Total:                     1320              0

-------------------
         Estimate
-------------------
tvcl      2.8138
tvv      11.005
tvvp      5.54
tvq       1.5159
tvka      2.0
Ω₁,₁      0.10267
Ω₂,₂      0.060776
Ω₃,₃      1.2012
Ω₄,₄      0.4235
Ω₅,₅      0.24473
σ_p       0.048405
-------------------

3.3 Comparing One- versus Two-compartment models

The 2-compartment model has a much lower objective function compared to the 1-compartment. Let’s compare the estimates from the 2 models using the compare_estimates function.

compare_estimates(; pkfit_1cmp, pkfit_2cmp)
11×3 DataFrame
Row parameter pkfit_1cmp pkfit_2cmp
String Float64? Float64?
1 tvcl 3.1642 2.81378
2 tvv 13.288 11.0046
3 tvka 2.0 2.0
4 Ω₁,₁ 0.0849405 0.102669
5 Ω₂,₂ 0.0485682 0.0607757
6 Ω₃,₃ 5.58107 1.20115
7 σ_p 0.100928 0.0484049
8 tvvp missing 5.53998
9 tvq missing 1.51591
10 Ω₄,₄ missing 0.423495
11 Ω₅,₅ missing 0.244731

We perform a likelihood ratio test to compare the two nested models. The test statistic and the \(p\)-value clearly indicate that a 2-compartment model should be preferred.

lrtest(pkfit_1cmp, pkfit_2cmp)
Statistic:          1200.0
Degrees of freedom:      4
P-value:               0.0

We should also compare the other metrics and statistics, such ηshrinkage, ϵshrinkage, aic, and bic using the metrics_table function.

@chain metrics_table(pkfit_2cmp) begin
    leftjoin(metrics_table(pkfit_1cmp); on = :Metric, makeunique = true)
    rename!(:Value => :pk2cmp, :Value_1 => :pk1cmp)
end
20×3 DataFrame
Row Metric pk2cmp pk1cmp
String Any Any
1 Successful true true
2 Estimation Time 18.022 3.077
3 Subjects 120 120
4 Fixed Parameters 1 1
5 Optimized Parameters 10 6
6 Conc Active Observations 1320 1320
7 Conc Missing Observations 0 0
8 Total Active Observations 1320 1320
9 Total Missing Observations 0 0
10 Likelihood Approximation Pumas.FOCE{Optim.NewtonTrustRegion{Float64}, Optim.Options{Float64, Nothing}} Pumas.FOCE{Optim.NewtonTrustRegion{Float64}, Optim.Options{Float64, Nothing}}
11 LogLikelihood (LL) 1830.63 1231.19
12 -2LL -3661.26 -2462.38
13 AIC -3641.26 -2450.38
14 BIC -3589.41 -2419.26
15 (η-shrinkage) η₁ 0.037 0.016
16 (η-shrinkage) η₂ 0.047 0.04
17 (η-shrinkage) η₃ 0.516 0.733
18 (ϵ-shrinkage) Conc 0.185 0.105
19 (η-shrinkage) η₄ 0.287 missing
20 (η-shrinkage) η₅ 0.154 missing

We next generate some goodness of fit plots to compare which model is performing better. To do this, we first inspect the diagnostics of our model fit.

res_inspect_1cmp = inspect(pkfit_1cmp)
[ Info: Calculating predictions.
[ Info: Calculating weighted residuals.
[ Info: Calculating empirical bayes.
[ Info: Evaluating individual parameters.
[ Info: Evaluating dose control parameters.
[ Info: Done.
FittedPumasModelInspection

Fitting was successful: true
Likehood approximation used for weighted residuals : Pumas.FOCE{Optim.NewtonTrustRegion{Float64}, Optim.Options{Float64, Nothing}}(Optim.NewtonTrustRegion{Float64}(1.0, 100.0, 1.4901161193847656e-8, 0.1, 0.25, 0.75, false), Optim.Options(x_abstol = 0.0, x_reltol = 0.0, f_abstol = 0.0, f_reltol = 0.0, g_abstol = 1.0e-5, g_reltol = 1.0e-8, outer_x_abstol = 0.0, outer_x_reltol = 0.0, outer_f_abstol = 0.0, outer_f_reltol = 0.0, outer_g_abstol = 1.0e-8, outer_g_reltol = 1.0e-8, f_calls_limit = 0, g_calls_limit = 0, h_calls_limit = 0, allow_f_increases = false, allow_outer_f_increases = true, successive_f_tol = 1, iterations = 1000, outer_iterations = 1000, store_trace = false, trace_simplex = false, show_trace = false, extended_trace = false, show_warnings = true, show_every = 1, time_limit = NaN, )
)
res_inspect_2cmp = inspect(pkfit_2cmp)
[ Info: Calculating predictions.
[ Info: Calculating weighted residuals.
[ Info: Calculating empirical bayes.
[ Info: Evaluating individual parameters.
[ Info: Evaluating dose control parameters.
[ Info: Done.
FittedPumasModelInspection

Fitting was successful: true
Likehood approximation used for weighted residuals : Pumas.FOCE{Optim.NewtonTrustRegion{Float64}, Optim.Options{Float64, Nothing}}(Optim.NewtonTrustRegion{Float64}(1.0, 100.0, 1.4901161193847656e-8, 0.1, 0.25, 0.75, false), Optim.Options(x_abstol = 0.0, x_reltol = 0.0, f_abstol = 0.0, f_reltol = 0.0, g_abstol = 1.0e-5, g_reltol = 1.0e-8, outer_x_abstol = 0.0, outer_x_reltol = 0.0, outer_f_abstol = 0.0, outer_f_reltol = 0.0, outer_g_abstol = 1.0e-8, outer_g_reltol = 1.0e-8, f_calls_limit = 0, g_calls_limit = 0, h_calls_limit = 0, allow_f_increases = false, allow_outer_f_increases = true, successive_f_tol = 1, iterations = 1000, outer_iterations = 1000, store_trace = false, trace_simplex = false, show_trace = false, extended_trace = false, show_warnings = true, show_every = 1, time_limit = NaN, )
)
gof_1cmp = goodness_of_fit(res_inspect_1cmp; figure = (; fontsize = 12))

A 4-mosaic goodness of fit plot showing the 1-compartment model

Goodness of Fit Plots
gof_2cmp = goodness_of_fit(res_inspect_2cmp; figure = (; fontsize = 12))

Trend plot with observations for all individual subjects over time

Subject Fits

These plots clearly indicate that the 2-compartment model is a better fit compared to the 1-compartment model.

We can look at selected sample of individual plots.

fig_subject_fits = subject_fits(
    res_inspect_2cmp;
    separate = true,
    paginate = true,
    facet = (; combinelabels = true),
    figure = (; fontsize = 18),
    axis = (; xlabel = "Time (hr)", ylabel = "CTMx Concentration (ng/mL)"),
)
fig_subject_fits[1]

Trend plot with observations for 4 individual subjects over time

Subject Fits for 4 Individuals

There a lot of important plotting functions you can use for your standard model diagnostics. Please make sure to read the documentation for plotting. Below, we are checking the distribution of the empirical Bayes estimates.

empirical_bayes_dist(res_inspect_2cmp; zeroline_color = :red)

A histogram for the empirical Bayes distribution of all subject-specific parameters

Empirical Bayes Distribution
empirical_bayes_vs_covariates(
    res_inspect_2cmp;
    categorical = [:Dose],
    figure = (; size = (600, 800)),
)

A histogram for the empirical Bayes distribution of all subject-specific parameters stratified by categorical covariates

Empirical Bayes Distribution Stratified by Covariates

Clearly, our guess at tvka seems off-target. Let’s try and estimate tvka instead of fixing it to 2:

pkfit_2cmp_unfix_ka = fit(pk_2cmp, pkpain_noplb, init_params(pk_2cmp), FOCE())
[ Info: Checking the initial parameter values.
[ Info: The initial negative log likelihood and its gradient are finite. Check passed.
Iter     Function value   Gradient norm 
     0    -3.200734e+02     1.272671e+03
 * time: 6.29425048828125e-5
     1    -8.682982e+02     1.000199e+03
 * time: 0.3818359375
     2    -1.381870e+03     5.008081e+02
 * time: 0.7042748928070068
     3    -1.551053e+03     6.833490e+02
 * time: 1.055907964706421
     4    -1.680887e+03     1.834586e+02
 * time: 1.3785779476165771
     5    -1.726118e+03     8.870274e+01
 * time: 1.6552119255065918
     6    -1.761023e+03     1.162036e+02
 * time: 1.9778239727020264
     7    -1.786619e+03     1.114552e+02
 * time: 2.310001850128174
     8    -1.863556e+03     9.914305e+01
 * time: 2.666949987411499
     9    -1.882942e+03     5.342676e+01
 * time: 3.010939836502075
    10    -1.888020e+03     2.010181e+01
 * time: 3.3433988094329834
    11    -1.889832e+03     1.867263e+01
 * time: 3.657357931137085
    12    -1.891649e+03     1.668512e+01
 * time: 3.9899909496307373
    13    -1.892615e+03     1.820701e+01
 * time: 4.318882942199707
    14    -1.893453e+03     1.745195e+01
 * time: 4.641011953353882
    15    -1.894760e+03     1.850174e+01
 * time: 4.972251892089844
    16    -1.895647e+03     1.773939e+01
 * time: 5.299329996109009
    17    -1.896597e+03     1.143462e+01
 * time: 5.597846984863281
    18    -1.897114e+03     9.720097e+00
 * time: 5.921367883682251
    19    -1.897373e+03     6.054321e+00
 * time: 6.249831914901733
    20    -1.897498e+03     3.985954e+00
 * time: 6.568563938140869
    21    -1.897571e+03     4.262464e+00
 * time: 6.909961938858032
    22    -1.897633e+03     4.010234e+00
 * time: 7.228219032287598
    23    -1.897714e+03     4.805375e+00
 * time: 7.511170864105225
    24    -1.897802e+03     3.508706e+00
 * time: 7.826236009597778
    25    -1.897865e+03     3.691477e+00
 * time: 8.138185024261475
    26    -1.897900e+03     2.982720e+00
 * time: 8.483932971954346
    27    -1.897928e+03     2.563790e+00
 * time: 8.794867992401123
    28    -1.897968e+03     3.261485e+00
 * time: 9.068126916885376
    29    -1.898013e+03     3.064690e+00
 * time: 9.369340896606445
    30    -1.898040e+03     1.636525e+00
 * time: 9.676731824874878
    31    -1.898051e+03     1.439997e+00
 * time: 9.983341932296753
    32    -1.898057e+03     1.436504e+00
 * time: 10.290406942367554
    33    -1.898069e+03     1.881529e+00
 * time: 10.565873861312866
    34    -1.898095e+03     3.253165e+00
 * time: 10.87034797668457
    35    -1.898142e+03     4.257942e+00
 * time: 11.18009901046753
    36    -1.898199e+03     3.685241e+00
 * time: 11.495620965957642
    37    -1.898245e+03     2.567364e+00
 * time: 11.838673830032349
    38    -1.898246e+03     2.561591e+00
 * time: 12.307148933410645
    39    -1.898251e+03     2.530888e+00
 * time: 12.726053953170776
    40    -1.898298e+03     2.673696e+00
 * time: 13.06554889678955
    41    -1.898300e+03     2.794639e+00
 * time: 13.453397989273071
    42    -1.898337e+03     3.751590e+00
 * time: 13.89956283569336
    43    -1.898421e+03     4.878407e+00
 * time: 14.199062824249268
    44    -1.898433e+03     4.391719e+00
 * time: 14.603793859481812
    45    -1.898437e+03     4.216518e+00
 * time: 15.164515972137451
    46    -1.898442e+03     4.108397e+00
 * time: 15.744963884353638
    47    -1.898446e+03     3.934902e+00
 * time: 16.38485097885132
    48    -1.898449e+03     3.769838e+00
 * time: 17.09025287628174
    49    -1.898450e+03     3.739486e+00
 * time: 17.76390290260315
    50    -1.898450e+03     3.712049e+00
 * time: 18.54351782798767
    51    -1.898457e+03     3.623436e+00
 * time: 19.244205951690674
    52    -1.898471e+03     2.668312e+00
 * time: 19.66318392753601
    53    -1.898479e+03     2.302438e+00
 * time: 20.08320903778076
    54    -1.898480e+03     2.386566e-01
 * time: 20.497478008270264
    55    -1.898480e+03     7.802040e-01
 * time: 20.844905853271484
    56    -1.898480e+03     7.369786e-01
 * time: 21.422022819519043
    57    -1.898480e+03     5.113191e-01
 * time: 21.904071807861328
    58    -1.898480e+03     3.067709e-01
 * time: 22.259647846221924
    59    -1.898480e+03     3.076791e-01
 * time: 22.62203288078308
    60    -1.898480e+03     3.102066e-01
 * time: 22.98664093017578
    61    -1.898480e+03     3.102066e-01
 * time: 23.4666268825531
    62    -1.898480e+03     3.102069e-01
 * time: 24.017258882522583
    63    -1.898480e+03     3.102071e-01
 * time: 24.85649585723877
    64    -1.898480e+03     3.102074e-01
 * time: 25.555357933044434
    65    -1.898480e+03     3.102076e-01
 * time: 26.227010011672974
    66    -1.898480e+03     3.102079e-01
 * time: 26.928642988204956
    67    -1.898480e+03     3.102081e-01
 * time: 27.587378978729248
    68    -1.898480e+03     3.102081e-01
 * time: 28.27103090286255
    69    -1.898480e+03     3.102081e-01
 * time: 28.96690082550049
    70    -1.898480e+03     3.102082e-01
 * time: 29.654830932617188
    71    -1.898480e+03     3.102082e-01
 * time: 30.359181880950928
    72    -1.898480e+03     3.102082e-01
 * time: 31.04028081893921
    73    -1.898480e+03     3.102102e-01
 * time: 31.720247983932495
    74    -1.898480e+03     3.102102e-01
 * time: 32.2472620010376
    75    -1.898480e+03     3.102096e-01
 * time: 32.72541904449463
    76    -1.898480e+03     3.102096e-01
 * time: 33.22709393501282
    77    -1.898480e+03     3.125688e-01
 * time: 33.67114186286926
    78    -1.898480e+03     3.125640e-01
 * time: 34.127923011779785
    79    -1.898480e+03     3.125618e-01
 * time: 34.57367300987244
    80    -1.898480e+03     3.125615e-01
 * time: 35.06596398353577
    81    -1.898480e+03     3.125612e-01
 * time: 35.58578395843506
    82    -1.898480e+03     3.125610e-01
 * time: 36.074020862579346
    83    -1.898480e+03     3.125609e-01
 * time: 36.619977951049805
    84    -1.898480e+03     3.125604e-01
 * time: 37.10071086883545
    85    -1.898480e+03     3.125602e-01
 * time: 37.566136837005615
    86    -1.898480e+03     3.125602e-01
 * time: 38.07646989822388
    87    -1.898480e+03     3.125602e-01
 * time: 38.78900098800659
    88    -1.898480e+03     3.125602e-01
 * time: 39.5242018699646
    89    -1.898480e+03     3.125602e-01
 * time: 40.272294998168945
    90    -1.898480e+03     3.125602e-01
 * time: 40.997889041900635
    91    -1.898480e+03     3.125602e-01
 * time: 41.73891997337341
    92    -1.898480e+03     3.125602e-01
 * time: 42.23625087738037
    93    -1.898480e+03     3.125602e-01
 * time: 42.752264976501465
    94    -1.898480e+03     3.125602e-01
 * time: 43.26782703399658
    95    -1.898480e+03     1.387453e-01
 * time: 43.58665990829468
    96    -1.898480e+03     1.387453e-01
 * time: 43.98843693733215
    97    -1.898480e+03     1.387453e-01
 * time: 44.52016282081604
    98    -1.898480e+03     1.387453e-01
 * time: 45.06600093841553
    99    -1.898480e+03     1.387453e-01
 * time: 45.456135988235474
FittedPumasModel

Successful minimization:                      true

Likelihood approximation:                     FOCE
Likelihood Optimizer:                         BFGS
Dynamical system type:                 Closed form

Log-likelihood value:                    1898.4797
Number of subjects:                            120
Number of parameters:         Fixed      Optimized
                                  0             11
Observation records:         Active        Missing
    Conc:                      1320              0
    Total:                     1320              0

-------------------
         Estimate
-------------------
tvcl      2.6191
tvv      11.378
tvvp      8.453
tvq       1.3164
tvka      4.8926
Ω₁,₁      0.13243
Ω₂,₂      0.059669
Ω₃,₃      0.41581
Ω₄,₄      0.080679
Ω₅,₅      0.24996
σ_p       0.049097
-------------------
compare_estimates(; pkfit_2cmp, pkfit_2cmp_unfix_ka)
11×3 DataFrame
Row parameter pkfit_2cmp pkfit_2cmp_unfix_ka
String Float64? Float64?
1 tvcl 2.81378 2.6191
2 tvv 11.0046 11.3784
3 tvvp 5.53998 8.45297
4 tvq 1.51591 1.31637
5 tvka 2.0 4.89257
6 Ω₁,₁ 0.102669 0.132432
7 Ω₂,₂ 0.0607757 0.0596693
8 Ω₃,₃ 1.20115 0.415811
9 Ω₄,₄ 0.423495 0.0806789
10 Ω₅,₅ 0.244731 0.249956
11 σ_p 0.0484049 0.0490975

Let’s revaluate the goodness of fits and η distribution plots.

Not much change in the general gof plots

res_inspect_2cmp_unfix_ka = inspect(pkfit_2cmp_unfix_ka)
[ Info: Calculating predictions.
[ Info: Calculating weighted residuals.
[ Info: Calculating empirical bayes.
[ Info: Evaluating individual parameters.
[ Info: Evaluating dose control parameters.
[ Info: Done.
FittedPumasModelInspection

Fitting was successful: true
Likehood approximation used for weighted residuals : Pumas.FOCE{Optim.NewtonTrustRegion{Float64}, Optim.Options{Float64, Nothing}}(Optim.NewtonTrustRegion{Float64}(1.0, 100.0, 1.4901161193847656e-8, 0.1, 0.25, 0.75, false), Optim.Options(x_abstol = 0.0, x_reltol = 0.0, f_abstol = 0.0, f_reltol = 0.0, g_abstol = 1.0e-5, g_reltol = 1.0e-8, outer_x_abstol = 0.0, outer_x_reltol = 0.0, outer_f_abstol = 0.0, outer_f_reltol = 0.0, outer_g_abstol = 1.0e-8, outer_g_reltol = 1.0e-8, f_calls_limit = 0, g_calls_limit = 0, h_calls_limit = 0, allow_f_increases = false, allow_outer_f_increases = true, successive_f_tol = 1, iterations = 1000, outer_iterations = 1000, store_trace = false, trace_simplex = false, show_trace = false, extended_trace = false, show_warnings = true, show_every = 1, time_limit = NaN, )
)
goodness_of_fit(res_inspect_2cmp_unfix_ka; figure = (; fontsize = 12))

A 4-mosaic goodness of fit plot showing the 2-compartment model

Goodness of Fit Plots

But you can see a huge improvement in the ηka, (η₃) distribution which is now centered around zero

empirical_bayes_vs_covariates(
    res_inspect_2cmp_unfix_ka;
    categorical = [:Dose],
    ebes = [:η₃],
    figure = (; size = (600, 800)),
)

A histogram for the empirical Bayes distribution of all subject-specific parameters stratified by categorical covariates

Empirical Bayes Distribution Stratified by Covariates

Finally looking at some individual plots for the same subjects as earlier:

fig_subject_fits2 = subject_fits(
    res_inspect_2cmp_unfix_ka;
    separate = true,
    paginate = true,
    facet = (; combinelabels = true, linkyaxes = false),
    figure = (; fontsize = 18),
    axis = (; xlabel = "Time (hr)", ylabel = "CTMx Concentration (ng/mL)"),
)
fig_subject_fits2[6]

Trend plot with observations for 4 individual subjects over time

Subject Fits for 4 Individuals

The randomly sampled individual fits don’t seem good in some individuals, but we can evaluate this via a vpc to see how to go about.

3.4 Visual Predictive Checks (VPC)

We can now perform a vpc to check. The default plots provide a 80% prediction interval and a 95% simulated CI (shaded area) around each of the quantiles

pk_vpc = vpc(
    pkfit_2cmp_unfix_ka,
    200;
    observations = [:Conc],
    stratify_by = [:Dose],
    ensemblealg = EnsembleThreads(), # multi-threading
)
[ Info: Continuous VPC
Visual Predictive Check
  Type of VPC: Continuous VPC
  Simulated populations: 200
  Subjects in data: 120
  Stratification variable(s): [:Dose]
  Confidence level: 0.95
  VPC lines: quantiles ([0.1, 0.5, 0.9])
vpc_plot(
    pk_2cmp,
    pk_vpc;
    rows = 1,
    columns = 3,
    figure = (; size = (1400, 1000), fontsize = 22),
    axis = (;
        xlabel = "Time (hr)",
        ylabel = "Observed/Predicted\n CTMx Concentration (ng/mL)",
    ),
    facet = (; combinelabels = true),
)

A visual predictive plot stratified by dose group

Visual Predictive Plots

The visual predictive check suggests that the model captures the data well across all dose levels.

4 Additional Help

If you have questions regarding this tutorial, please post them on our discourse site.