A Comprehensive Introduction to Pumas

Authors

Vijay Ivaturi

Jose Storopoli

This tutorial provides a comprehensive introduction to a modeling and simulation workflow in Pumas. The idea is not to get into the details of Pumas specifics, but instead provide a narrative on the lines of a regular workflow in our day-to-day work, with brevity where required to allow a broad overview. Wherever possible, cross-references will be provided to documentation and detailed examples that provide deeper insight into a particular topic.

As part of this workflow, you will be introduced to various aspects such as:

  1. Data wrangling in Julia
  2. Exploratory analysis in Julia
  3. Continuous data non-linear mixed effects modeling in Pumas
  4. Model comparison routines, post-processing, validation etc.

1 The Study and Design

CTMNopain is a novel anti-inflammatory agent under preliminary investigation. A dose-ranging trial was conducted comparing placebo with 3 doses of CTMNopain (5mg, 20mg and 80 mg QD). The maximum tolerated dose is 160 mg per day. Plasma concentrations (mg/L) of the drug were measured at 0, 0.5, 1, 1.5, 2, 2.5, 3-8 hours.

Pain score (0=no pain, 1=mild, 2=moderate, 3=severe) were obtained at time points when plasma concentration was collected. A pain score of 2 or more is considered as no pain relief.

The subjects can request for remedication if pain relief is not achieved after 2 hours post dose. Some subjects had remedication before 2 hours if they were not able to bear the pain. The time to remedication and the remedication status is available for subjects.

The pharmacokinetic dataset can be accessed using PharmaDatasets.jl.

2 Setup

2.1 Load libraries

These libraries provide the workhorse functionality in the Pumas ecosystem:

using Pumas
using PumasUtilities
using NCA
using NCAUtilities

In addition, libraries below are good add-on’s that provide ancillary functionality:

using GLM: lm, @formula
using Random
using CSV
using DataFramesMeta
using CairoMakie
using PharmaDatasets

2.2 Data Wrangling

We start by reading in the dataset and making some quick summaries.

Tip

If you want to learn more about data wrangling, don’t forget to check our Data Wrangling in Julia tutorials!

pkpain_df = dataset("pk_painrelief")
first(pkpain_df, 5)
5×7 DataFrame
Row Subject Time Conc PainRelief PainScore RemedStatus Dose
Int64 Float64 Float64 Int64 Int64 Int64 String7
1 1 0.0 0.0 0 3 1 20 mg
2 1 0.5 1.15578 1 1 0 20 mg
3 1 1.0 1.37211 1 0 0 20 mg
4 1 1.5 1.30058 1 0 0 20 mg
5 1 2.0 1.19195 1 1 0 20 mg

Let’s filter out the placebo data as we don’t need that for the PK analysis.

pkpain_noplb_df = @rsubset pkpain_df :Dose != "Placebo";
first(pkpain_noplb_df, 5)
5×7 DataFrame
Row Subject Time Conc PainRelief PainScore RemedStatus Dose
Int64 Float64 Float64 Int64 Int64 Int64 String7
1 1 0.0 0.0 0 3 1 20 mg
2 1 0.5 1.15578 1 1 0 20 mg
3 1 1.0 1.37211 1 0 0 20 mg
4 1 1.5 1.30058 1 0 0 20 mg
5 1 2.0 1.19195 1 1 0 20 mg

3 Analysis

3.1 Non-compartmental analysis

Let’s begin by performing a quick NCA of the concentration time profiles and view the exposure changes across doses. The input data specification for NCA analysis requires the presence of a :route column and an :amt column that specifies the dose. So, let’s add that in:

@rtransform! pkpain_noplb_df begin
    :route = "ev"
    :Dose = parse(Int, chop(:Dose; tail = 3))
end

We also need to create an :amt column:

@rtransform! pkpain_noplb_df :amt = :Time == 0 ? :Dose : missing

Now, we map the data variables to the read_nca function that prepares the data for NCA analysis.

pkpain_nca = read_nca(
    pkpain_noplb_df;
    id = :Subject,
    time = :Time,
    amt = :amt,
    observations = :Conc,
    group = [:Dose],
    route = :route,
)
NCAPopulation (120 subjects):
  Group: [["Dose" => 5], ["Dose" => 20], ["Dose" => 80]]
  Number of missing observations: 0
  Number of blq observations: 0

Now that we mapped the data in, let’s visualize the concentration vs time plots for a few individuals. When paginate is set to true, a vector of plots are returned and below we display the first element with 9 individuals.

f = observations_vs_time(
    pkpain_nca;
    paginate = true,
    axis = (; xlabel = "Time (hr)", ylabel = "CTMNoPain Concentration (ng/mL)"),
    facet = (; combinelabels = true),
)
f[1]

An observations versus time profile for all subjects

Observations versus Time

or you can view the summary curves by dose group as passed in to the group argument in read_nca

summary_observations_vs_time(
    pkpain_nca,
    figure = (; fontsize = 22, size = (800, 1000)),
    color = "black",
    linewidth = 3,
    axis = (; xlabel = "Time (hr)", ylabel = "CTMX Concentration (μg/mL)"),
    facet = (; combinelabels = true, linkaxes = true),
)

An observations versus time profile for all subjects in a summarized manner

Summary Observations versus Time

A full NCA Report is now obtained for completeness purposes using the run_nca function, but later we will only extract a couple of key metrics of interest.

pk_nca = run_nca(pkpain_nca; sigdigits = 3)

We can look at the NCA fits for some subjects. Here f is a vector or figures. We’ll showcase the first image by indexing f:

f = subject_fits(
    pk_nca,
    paginate = true,
    axis = (; xlabel = "Time (hr)", ylabel = "CTMX Concentration (μg/mL)"),
    facet = (; combinelabels = true, linkaxes = true),
)
f[1]

Trend plot with observations for all individual subjects over time

Subject Fits

As CTMNopain’s effect maybe mainly related to maximum concentration (cmax) or area under the curve (auc), we present some summary statistics using the summarize function from NCA.

strata = [:Dose]
1-element Vector{Symbol}:
 :Dose
params = [:cmax, :aucinf_obs]
2-element Vector{Symbol}:
 :cmax
 :aucinf_obs
output = summarize(pk_nca; stratify_by = strata, parameters = params)
6×10 DataFrame
Row Dose parameters numsamples minimum maximum mean std geomean geostd geomeanCV
Int64 String Int64 Float64 Float64 Float64 Float64 Float64 Float64 Float64
1 5 cmax 40 0.19 0.539 0.356075 0.0884129 0.345104 1.2932 26.1425
2 5 aucinf_obs 40 0.914 3.4 1.5979 0.490197 1.53373 1.32974 29.0868
3 20 cmax 40 0.933 2.7 1.4737 0.361871 1.43408 1.2633 23.6954
4 20 aucinf_obs 40 2.77 14.1 6.377 2.22239 6.02031 1.41363 35.6797
5 80 cmax 40 3.3 8.47 5.787 1.31957 5.64164 1.25757 23.2228
6 80 aucinf_obs 40 13.7 49.1 29.5 8.68984 28.2954 1.34152 30.0258

The statistics printed above are the default, but you can pass in your own statistics using the stats = [] argument to the summarize function.

We can look at a few parameter distribution plots.

parameters_vs_group(
    pk_nca,
    parameter = :cmax,
    axis = (; xlabel = "Dose (mg)", ylabel = "Cₘₐₓ (ng/mL)"),
    figure = (; fontsize = 18),
)

A violin plot for the Cmax distribution for each dose group

Cmax for each Dose Group

Dose normalized PK parameters, cmax and aucinf were essentially dose proportional between for 5 mg, 20 mg and 80 mg doses. You can perform a simple regression to check the impact of dose on cmax:

dp = NCA.DoseLinearityPowerModel(pk_nca, :cmax; level = 0.9)
Dose Linearity Power Model
Variable: cmax
Model: log(cmax) ~ log(α) + β × log(dose)
────────────────────────────────────
   Estimate  low CI 90%  high CI 90%
────────────────────────────────────
β   1.00775     0.97571       1.0398
────────────────────────────────────

Here’s a visualization for the dose linearity using a power model for cmax:

power_model(dp)

A dose linearity power model plot for Cmax

Dose Linearity Plot

We can also visualize a dose proportionality results with respect to a specific endpoint in a NCA Report; for example cmax and aucinf_obs:

dose_vs_dose_normalized(pk_nca, :cmax)

A dose proportionality plot for Cmax

Dose Proportionality Plot
dose_vs_dose_normalized(pk_nca, :aucinf_obs)

A dose proportionality plot for AUC

Dose Proportionality Plot

Based on visual inspection of the concentration time profiles as seen earlier, CTMNopain exhibited monophasic decline, and perhaps a one compartment model best fits the PK data.

3.2 Pharmacokinetic modeling

As seen from the plots above, the concentrations decline monoexponentially. We will evaluate both one and two compartment structural models to assess best fit. Further, different residual error models will also be tested.

We will use the results from NCA to provide us good initial estimates.

3.2.1 Data preparation for modeling

PumasNDF requires the presence of :evid and :cmt columns in the dataset.

@rtransform! pkpain_noplb_df begin
    :evid = :Time == 0 ? 1 : 0
    :cmt = :Time == 0 ? 1 : 2
    :cmt2 = 1 # for zero order absorption
end

Further, observations at time of dosing, i.e., when evid = 1 have to be missing

@rtransform! pkpain_noplb_df :Conc = :evid == 1 ? missing : :Conc

The dataframe will now be converted to a Population using read_pumas. Note that both observations and covariates are required to be an array even if it is one element.

pkpain_noplb = read_pumas(
    pkpain_noplb_df;
    id = :Subject,
    time = :Time,
    amt = :amt,
    observations = [:Conc],
    covariates = [:Dose],
    evid = :evid,
    cmt = :cmt,
)
Population
  Subjects: 120
  Covariates: Dose
  Observations: Conc

Now that the data is transformed to a Population of subjects, we can explore different models.

3.2.2 One-compartment model

Note

If you are not familiar yet with the @model blocks and syntax, please check our documentation.

pk_1cmp = @model begin

    @metadata begin
        desc = "One Compartment Model"
        timeu = u"hr"
    end

    @param begin
        """
        Clearance (L/hr)
        """
        tvcl  RealDomain(; lower = 0, init = 3.2)
        """
        Volume (L)
        """
        tvv  RealDomain(; lower = 0, init = 16.4)
        """
        Absorption rate constant (h-1)
        """
        tvka  RealDomain(; lower = 0, init = 3.8)
        """
          - ΩCL
          - ΩVc
          - ΩKa
        """
        Ω  PDiagDomain(init = [0.04, 0.04, 0.04])
        """
        Proportional RUV
        """
        σ_p  RealDomain(; lower = 0.0001, init = 0.2)
    end

    @random begin
        η ~ MvNormal(Ω)
    end

    @covariates begin
        """
        Dose (mg)
        """
        Dose
    end

    @pre begin
        CL = tvcl * exp(η[1])
        Vc = tvv * exp(η[2])
        Ka = tvka * exp(η[3])
    end

    @dynamics Depots1Central1

    @derived begin
        cp := @. Central / Vc
        """
        CTMx Concentration (ng/mL)
        """
        Conc ~ @. Normal(cp, abs(cp) * σ_p)
    end

end
┌ Warning: Covariate Dose is not used in the model.
└ @ Pumas ~/run/_work/PumasTutorials.jl/PumasTutorials.jl/custom_julia_depot/packages/Pumas/GJfPM/src/dsl/model_macro.jl:2958
PumasModel
  Parameters: tvcl, tvv, tvka, Ω, σ_p
  Random effects: η
  Covariates: Dose
  Dynamical system variables: Depot, Central
  Dynamical system type: Closed form
  Derived: Conc
  Observed: Conc
Tip

Note that the local assignment := can be used to define intermediate statements that will not be carried outside of the block. This means that all the resulting data workflows from this model will not contain the intermediate variables defined with :=. We use this when we want to suppress the variable from any further output.

The idea behind := is for performance reasons. If you are not carrying the variable defined with := outside of the block, then it is not necessary to store it in the resulting data structures. Not only will your model run faster, but the resulting data structures will also be smaller.

Before going to fit the model, let’s evaluate some helpful steps via simulation to check appropriateness of data and model

# zero out the random effects
etas = zero_randeffs(pk_1cmp, init_params(pk_1cmp), pkpain_noplb)

Above, we are generating a vector of η’s of the same length as the number of subjects to zero out the random effects. We do this as we are evaluating the trajectories of the concentrations at the initial set of parameters at a population level. Other helper functions here are sample_randeffs and init_randeffs. Please refer to the documentation.

simpk_iparams = simobs(pk_1cmp, pkpain_noplb, init_params(pk_1cmp), etas)
Simulated population (Vector{<:Subject})
  Simulated subjects: 120
  Simulated variables: Conc
sim_plot(
    pk_1cmp,
    simpk_iparams;
    observations = [:Conc],
    figure = (; fontsize = 18),
    axis = (;
        xlabel = "Time (hr)",
        ylabel = "Observed/Predicted \n CTMx Concentration (ng/mL)",
    ),
)

A simulated observations versus time plot overlaid with the scatter plot of the observed observations

Simulated Observations Plot

Our NCA based initial guess on the parameters seem to work well.

Lets change the initial estimate of a couple of the parameters to evaluate the sensitivity.

pkparam = (; init_params(pk_1cmp)..., tvka = 2, tvv = 10)
(tvcl = 3.2,
 tvv = 10,
 tvka = 2,
 Ω = [0.04 0.0 0.0; 0.0 0.04 0.0; 0.0 0.0 0.04],
 σ_p = 0.2,)
simpk_changedpars = simobs(pk_1cmp, pkpain_noplb, pkparam, etas)
Simulated population (Vector{<:Subject})
  Simulated subjects: 120
  Simulated variables: Conc
sim_plot(
    pk_1cmp,
    simpk_changedpars;
    observations = [:Conc],
    figure = (; fontsize = 18),
    axis = (
        xlabel = "Time (hr)",
        ylabel = "Observed/Predicted \n CTMx Concentration (ng/mL)",
    ),
)

A simulated observations versus time plot overlaid with the scatter plot of the observed observations

Simulated Observations Plot

Changing the tvka and decreasing the tvv seemed to make an impact and observations go through the simulated lines.

To get a quick ballpark estimate of your PK parameters, we can do a NaivePooled analysis.

3.2.2.1 NaivePooled
pkfit_np = fit(pk_1cmp, pkpain_noplb, init_params(pk_1cmp), NaivePooled(); omegas = (:Ω,))
[ Info: Checking the initial parameter values.
[ Info: The initial negative log likelihood and its gradient are finite. Check passed.
Iter     Function value   Gradient norm 
     0     7.744356e+02     3.715711e+03
 * time: 0.022976160049438477
     1     2.343899e+02     1.747348e+03
 * time: 1.0286791324615479
     2     9.696232e+01     1.198088e+03
 * time: 1.0320501327514648
     3    -7.818699e+01     5.538151e+02
 * time: 1.0342581272125244
     4    -1.234803e+02     2.462514e+02
 * time: 1.0363490581512451
     5    -1.372888e+02     2.067458e+02
 * time: 1.0385570526123047
     6    -1.410579e+02     1.162950e+02
 * time: 1.0408351421356201
     7    -1.434754e+02     5.632816e+01
 * time: 1.0433530807495117
     8    -1.453401e+02     7.859270e+01
 * time: 1.0461151599884033
     9    -1.498185e+02     1.455606e+02
 * time: 1.0487091541290283
    10    -1.534371e+02     1.303682e+02
 * time: 1.0511481761932373
    11    -1.563557e+02     5.975474e+01
 * time: 1.0532500743865967
    12    -1.575052e+02     9.308611e+00
 * time: 1.0552170276641846
    13    -1.579357e+02     1.234484e+01
 * time: 1.0574631690979004
    14    -1.581874e+02     7.478196e+00
 * time: 1.0595932006835938
    15    -1.582981e+02     2.027162e+00
 * time: 1.0615789890289307
    16    -1.583375e+02     5.578262e+00
 * time: 1.0635449886322021
    17    -1.583556e+02     4.727050e+00
 * time: 1.0660309791564941
    18    -1.583644e+02     2.340173e+00
 * time: 1.0684270858764648
    19    -1.583680e+02     7.738100e-01
 * time: 1.0709881782531738
    20    -1.583696e+02     3.300689e-01
 * time: 1.0735750198364258
    21    -1.583704e+02     3.641985e-01
 * time: 1.0762059688568115
    22    -1.583707e+02     4.365901e-01
 * time: 1.0787920951843262
    23    -1.583709e+02     3.887800e-01
 * time: 1.0814120769500732
    24    -1.583710e+02     2.766977e-01
 * time: 1.084015130996704
    25    -1.583710e+02     1.758029e-01
 * time: 1.0865700244903564
    26    -1.583710e+02     1.133947e-01
 * time: 1.0890581607818604
    27    -1.583710e+02     7.922544e-02
 * time: 1.0915031433105469
    28    -1.583710e+02     5.954998e-02
 * time: 1.0934860706329346
    29    -1.583710e+02     4.157079e-02
 * time: 1.0954620838165283
    30    -1.583710e+02     4.295447e-02
 * time: 1.0977931022644043
    31    -1.583710e+02     5.170753e-02
 * time: 1.1003830432891846
    32    -1.583710e+02     2.644383e-02
 * time: 1.103865146636963
    33    -1.583710e+02     4.548993e-03
 * time: 1.1071829795837402
    34    -1.583710e+02     2.501804e-02
 * time: 1.1105570793151855
    35    -1.583710e+02     3.763440e-02
 * time: 1.113267183303833
    36    -1.583710e+02     3.206026e-02
 * time: 1.1159181594848633
    37    -1.583710e+02     1.003698e-02
 * time: 1.118575096130371
    38    -1.583710e+02     2.209089e-02
 * time: 1.1212060451507568
    39    -1.583710e+02     4.954172e-03
 * time: 1.123840093612671
    40    -1.583710e+02     1.609373e-02
 * time: 1.127295970916748
    41    -1.583710e+02     1.579802e-02
 * time: 1.129986047744751
    42    -1.583710e+02     1.014113e-03
 * time: 1.1325900554656982
    43    -1.583710e+02     6.050644e-03
 * time: 1.136044979095459
    44    -1.583710e+02     1.354412e-02
 * time: 1.1387221813201904
    45    -1.583710e+02     4.473248e-03
 * time: 1.1414051055908203
    46    -1.583710e+02     4.644735e-03
 * time: 1.1441171169281006
    47    -1.583710e+02     9.829910e-03
 * time: 1.146846055984497
    48    -1.583710e+02     1.047561e-03
 * time: 1.1495881080627441
    49    -1.583710e+02     8.366895e-03
 * time: 1.1522881984710693
    50    -1.583710e+02     7.879055e-04
 * time: 1.1550211906433105
FittedPumasModel

Successful minimization:                      true

Likelihood approximation:              NaivePooled
Likelihood Optimizer:                         BFGS
Dynamical system type:                 Closed form

Log-likelihood value:                    158.37103
Number of subjects:                            120
Number of parameters:         Fixed      Optimized
                                  1              6
Observation records:         Active        Missing
    Conc:                      1320              0
    Total:                     1320              0

------------------
         Estimate
------------------
tvcl      3.0054
tvv      14.089
tvka     44.228
Ω₁,₁      0.0
Ω₂,₂      0.0
Ω₃,₃      0.0
σ_p       0.32999
------------------
coefficients_table(pkfit_np)
7×3 DataFrame
Row Parameter Description Estimate
String Abstract… Float64
1 tvcl Clearance (L/hr)\n 3.005
2 tvv Volume (L)\n 14.089
3 tvka Absorption rate constant (h-1)\n 44.228
4 Ω₁,₁ ΩCL 0.0
5 Ω₂,₂ ΩVc 0.0
6 Ω₃,₃ ΩKa 0.0
7 σ_p Proportional RUV\n 0.33

The final estimates from the NaivePooled approach seem reasonably close to our initial guess from NCA, except for the tvka parameter. We will stick with our initial guess.

One way to be cautious before going into a complete fitting routine is to evaluate the likelihood of the individual subjects given the initial parameter values and see if any subject(s) pops out as unreasonable. There are a few ways of doing this:

  • check the loglikelihood subject wise
  • check if there any influential subjects

Below, we are basically checking if the initial estimates for any subject are way off that we are unable to compute the initial loglikelihood.

lls = []
for subj in pkpain_noplb
    push!(lls, loglikelihood(pk_1cmp, subj, pkparam, FOCE()))
end
# the plot below is using native CairoMakie `hist`
hist(lls; bins = 10, normalization = :none, color = (:black, 0.5))

A histogram of the individual loglikelihoods

Histogram of Loglikelihoods

The distribution of the loglikelihood’s suggest no extreme outliers.

A more convenient way is to use the findinfluential function that provides a list of k top influential subjects by showing the normalized (minus) loglikelihood for each subject. As you can see below, the minus loglikelihood in the range of 16 agrees with the histogram plotted above.

influential_subjects = findinfluential(pk_1cmp, pkpain_noplb, pkparam, FOCE())
120-element Vector{@NamedTuple{id::String, nll::Float64}}:
 (id = "148", nll = 16.65965885684477)
 (id = "135", nll = 16.648985190076335)
 (id = "156", nll = 15.959069556607496)
 (id = "159", nll = 15.441218240496484)
 (id = "149", nll = 14.71513464411951)
 (id = "88", nll = 13.09709837464614)
 (id = "16", nll = 12.98228052193144)
 (id = "61", nll = 12.652182902303679)
 (id = "71", nll = 12.500330088085505)
 (id = "59", nll = 12.241510254805235)
 ⋮
 (id = "57", nll = -22.79767423253431)
 (id = "93", nll = -22.836900711478208)
 (id = "12", nll = -23.007742339519247)
 (id = "123", nll = -23.292751843079234)
 (id = "41", nll = -23.425412534960515)
 (id = "99", nll = -23.535214841901112)
 (id = "29", nll = -24.025959868383083)
 (id = "52", nll = -24.164757842493685)
 (id = "24", nll = -25.57209232565845)
3.2.2.2 FOCE

Now that we have a good handle on our data, lets go ahead and fit a population model with FOCE:

pkfit_1cmp = fit(pk_1cmp, pkpain_noplb, pkparam, FOCE(); constantcoef = (; tvka = 2))
[ Info: Checking the initial parameter values.
[ Info: The initial negative log likelihood and its gradient are finite. Check passed.
Iter     Function value   Gradient norm 
     0    -5.935351e+02     5.597318e+02
 * time: 6.794929504394531e-5
     1    -7.022088e+02     1.707063e+02
 * time: 0.3063819408416748
     2    -7.314067e+02     2.903269e+02
 * time: 0.47862792015075684
     3    -8.520591e+02     2.285888e+02
 * time: 0.6429300308227539
     4    -1.120191e+03     3.795410e+02
 * time: 1.0446679592132568
     5    -1.178784e+03     2.323978e+02
 * time: 1.1877639293670654
     6    -1.218320e+03     9.699907e+01
 * time: 1.336503028869629
     7    -1.223641e+03     5.862105e+01
 * time: 1.4849469661712646
     8    -1.227620e+03     1.831403e+01
 * time: 1.6717040538787842
     9    -1.228381e+03     2.132323e+01
 * time: 1.7957069873809814
    10    -1.230098e+03     2.921228e+01
 * time: 1.9300000667572021
    11    -1.230854e+03     2.029662e+01
 * time: 2.0620429515838623
    12    -1.231116e+03     5.229097e+00
 * time: 2.186326026916504
    13    -1.231179e+03     1.689232e+00
 * time: 2.3499300479888916
    14    -1.231187e+03     1.215379e+00
 * time: 2.4502830505371094
    15    -1.231188e+03     2.770380e-01
 * time: 2.5491058826446533
    16    -1.231188e+03     1.636653e-01
 * time: 2.640552043914795
    17    -1.231188e+03     2.701133e-01
 * time: 2.7346630096435547
    18    -1.231188e+03     3.163363e-01
 * time: 2.829946994781494
    19    -1.231188e+03     1.505149e-01
 * time: 2.9668710231781006
    20    -1.231188e+03     2.484999e-02
 * time: 3.042357921600342
    21    -1.231188e+03     8.446863e-04
 * time: 3.114832878112793
FittedPumasModel

Successful minimization:                      true

Likelihood approximation:                     FOCE
Likelihood Optimizer:                         BFGS
Dynamical system type:                 Closed form

Log-likelihood value:                     1231.188
Number of subjects:                            120
Number of parameters:         Fixed      Optimized
                                  1              6
Observation records:         Active        Missing
    Conc:                      1320              0
    Total:                     1320              0

-------------------
         Estimate
-------------------
tvcl      3.1642
tvv      13.288
tvka      2.0
Ω₁,₁      0.08494
Ω₂,₂      0.048568
Ω₃,₃      5.5811
σ_p       0.10093
-------------------
infer(pkfit_1cmp)
[ Info: Calculating: variance-covariance matrix.
[ Info: Done.
Asymptotic inference results using sandwich estimator

Successful minimization:                      true

Likelihood approximation:                     FOCE
Likelihood Optimizer:                         BFGS
Dynamical system type:                 Closed form

Log-likelihood value:                     1231.188
Number of subjects:                            120
Number of parameters:         Fixed      Optimized
                                  1              6
Observation records:         Active        Missing
    Conc:                      1320              0
    Total:                     1320              0

-------------------------------------------------------------------
        Estimate           SE                     95.0% C.I.
-------------------------------------------------------------------
tvcl     3.1642          0.08662          [ 2.9944  ;  3.334   ]
tvv     13.288           0.27481          [12.749   ; 13.827   ]
tvka     2.0             NaN              [  NaN    ;   NaN      ]
Ω₁,₁     0.08494         0.011022         [ 0.063338;  0.10654 ]
Ω₂,₂     0.048568        0.0063502        [ 0.036122;  0.061014]
Ω₃,₃     5.5811          1.2188           [ 3.1922  ;  7.97    ]
σ_p      0.10093         0.0057196        [ 0.089718;  0.11214 ]
-------------------------------------------------------------------

Notice that tvka is fixed to 2 as we don’t have a lot of information before tmax. From the results above, we see that the parameter precision for this model is reasonable.

3.2.3 Two-compartment model

Just to be sure, let’s fit a 2-compartment model and evaluate:

pk_2cmp = @model begin

    @param begin
        """
        Clearance (L/hr)
        """
        tvcl  RealDomain(; lower = 0, init = 3.2)
        """
        Central Volume (L)
        """
        tvv  RealDomain(; lower = 0, init = 16.4)
        """
        Peripheral Volume (L)
        """
        tvvp  RealDomain(; lower = 0, init = 10)
        """
        Distributional Clearance (L/hr)
        """
        tvq  RealDomain(; lower = 0, init = 2)
        """
        Absorption rate constant (h-1)
        """
        tvka  RealDomain(; lower = 0, init = 1.3)
        """
          - ΩCL
          - ΩVc
          - ΩKa
          - ΩVp
          - ΩQ
        """
        Ω  PDiagDomain(init = [0.04, 0.04, 0.04, 0.04, 0.04])
        """
        Proportional RUV
        """
        σ_p  RealDomain(; lower = 0.0001, init = 0.2)
    end

    @random begin
        η ~ MvNormal(Ω)
    end

    @covariates begin
        """
        Dose (mg)
        """
        Dose
    end

    @pre begin
        CL = tvcl * exp(η[1])
        Vc = tvv * exp(η[2])
        Ka = tvka * exp(η[3])
        Vp = tvvp * exp(η[4])
        Q = tvq * exp(η[5])
    end

    @dynamics Depots1Central1Periph1

    @derived begin
        cp := @. Central / Vc
        """
        CTMx Concentration (ng/mL)
        """
        Conc ~ @. Normal(cp, cp * σ_p)
    end
end
┌ Warning: Covariate Dose is not used in the model.
└ @ Pumas ~/run/_work/PumasTutorials.jl/PumasTutorials.jl/custom_julia_depot/packages/Pumas/GJfPM/src/dsl/model_macro.jl:2958
PumasModel
  Parameters: tvcl, tvv, tvvp, tvq, tvka, Ω, σ_p
  Random effects: η
  Covariates: Dose
  Dynamical system variables: Depot, Central, Peripheral
  Dynamical system type: Closed form
  Derived: Conc
  Observed: Conc
3.2.3.1 FOCE
pkfit_2cmp =
    fit(pk_2cmp, pkpain_noplb, init_params(pk_2cmp), FOCE(); constantcoef = (; tvka = 2))
[ Info: Checking the initial parameter values.
[ Info: The initial negative log likelihood and its gradient are finite. Check passed.
Iter     Function value   Gradient norm 
     0    -6.302369e+02     1.021050e+03
 * time: 6.914138793945312e-5
     1    -9.197817e+02     9.927951e+02
 * time: 0.32505202293395996
     2    -1.372640e+03     2.054986e+02
 * time: 0.6161291599273682
     3    -1.446326e+03     1.543987e+02
 * time: 0.8884520530700684
     4    -1.545570e+03     1.855028e+02
 * time: 1.1908230781555176
     5    -1.581449e+03     1.713157e+02
 * time: 1.6332471370697021
     6    -1.639433e+03     1.257382e+02
 * time: 1.9033780097961426
     7    -1.695964e+03     7.450539e+01
 * time: 2.2038440704345703
     8    -1.722243e+03     5.961044e+01
 * time: 2.483635187149048
     9    -1.736883e+03     7.320921e+01
 * time: 2.76632022857666
    10    -1.753547e+03     7.501938e+01
 * time: 3.0248570442199707
    11    -1.764053e+03     6.185661e+01
 * time: 3.3146021366119385
    12    -1.778991e+03     4.831033e+01
 * time: 3.621286153793335
    13    -1.791492e+03     4.943278e+01
 * time: 3.961350202560425
    14    -1.799847e+03     2.871410e+01
 * time: 4.313982009887695
    15    -1.805374e+03     7.520791e+01
 * time: 4.664659023284912
    16    -1.816260e+03     2.990621e+01
 * time: 5.001169204711914
    17    -1.818252e+03     2.401915e+01
 * time: 5.307007074356079
    18    -1.822988e+03     2.587225e+01
 * time: 5.627120018005371
    19    -1.824653e+03     1.550517e+01
 * time: 5.90357518196106
    20    -1.826074e+03     1.788927e+01
 * time: 6.217127084732056
    21    -1.826821e+03     1.888389e+01
 * time: 6.516906023025513
    22    -1.827900e+03     1.432840e+01
 * time: 6.811236143112183
    23    -1.828511e+03     9.422041e+00
 * time: 7.117821216583252
    24    -1.828754e+03     5.363442e+00
 * time: 7.436201095581055
    25    -1.828862e+03     4.916159e+00
 * time: 7.697673082351685
    26    -1.829007e+03     4.695755e+00
 * time: 7.98659610748291
    27    -1.829358e+03     1.090249e+01
 * time: 8.290166139602661
    28    -1.829830e+03     1.451325e+01
 * time: 8.60358214378357
    29    -1.830201e+03     1.108715e+01
 * time: 8.914958000183105
    30    -1.830360e+03     2.891223e+00
 * time: 9.224247217178345
    31    -1.830390e+03     1.695557e+00
 * time: 9.490147113800049
    32    -1.830404e+03     1.601712e+00
 * time: 9.794012069702148
    33    -1.830432e+03     2.823385e+00
 * time: 10.101286172866821
    34    -1.830477e+03     4.060617e+00
 * time: 10.4063081741333
    35    -1.830528e+03     5.133499e+00
 * time: 10.716417074203491
    36    -1.830593e+03     2.830970e+00
 * time: 11.036266088485718
    37    -1.830616e+03     3.342835e+00
 * time: 11.349440097808838
    38    -1.830622e+03     3.708884e+00
 * time: 11.624987125396729
    39    -1.830625e+03     2.062934e+00
 * time: 11.921450138092041
    40    -1.830627e+03     1.278569e+00
 * time: 12.19426703453064
    41    -1.830628e+03     1.832895e+00
 * time: 12.495031118392944
    42    -1.830628e+03     3.768840e-01
 * time: 12.804509162902832
    43    -1.830629e+03     3.152895e-01
 * time: 13.045242071151733
    44    -1.830630e+03     4.871060e-01
 * time: 13.371952056884766
    45    -1.830630e+03     3.110627e-01
 * time: 13.683919191360474
    46    -1.830630e+03     2.687758e-02
 * time: 13.978915214538574
    47    -1.830630e+03     4.694018e-03
 * time: 14.18165922164917
    48    -1.830630e+03     8.272969e-03
 * time: 14.39710021018982
    49    -1.830630e+03     8.249151e-03
 * time: 14.665932178497314
    50    -1.830630e+03     8.245562e-03
 * time: 14.997864007949829
    51    -1.830630e+03     8.240030e-03
 * time: 15.338874101638794
    52    -1.830630e+03     8.240030e-03
 * time: 15.708791017532349
    53    -1.830630e+03     8.240030e-03
 * time: 16.07951521873474
FittedPumasModel

Successful minimization:                      true

Likelihood approximation:                     FOCE
Likelihood Optimizer:                         BFGS
Dynamical system type:                 Closed form

Log-likelihood value:                    1830.6304
Number of subjects:                            120
Number of parameters:         Fixed      Optimized
                                  1             10
Observation records:         Active        Missing
    Conc:                      1320              0
    Total:                     1320              0

-------------------
         Estimate
-------------------
tvcl      2.8138
tvv      11.005
tvvp      5.54
tvq       1.5159
tvka      2.0
Ω₁,₁      0.10267
Ω₂,₂      0.060776
Ω₃,₃      1.2012
Ω₄,₄      0.4235
Ω₅,₅      0.24473
σ_p       0.048405
-------------------

3.3 Comparing One- versus Two-compartment models

The 2-compartment model has a much lower objective function compared to the 1-compartment. Let’s compare the estimates from the 2 models using the compare_estimates function.

compare_estimates(; pkfit_1cmp, pkfit_2cmp)
11×3 DataFrame
Row parameter pkfit_1cmp pkfit_2cmp
String Float64? Float64?
1 tvcl 3.1642 2.81378
2 tvv 13.288 11.0046
3 tvka 2.0 2.0
4 Ω₁,₁ 0.0849405 0.102669
5 Ω₂,₂ 0.0485682 0.0607757
6 Ω₃,₃ 5.58107 1.20115
7 σ_p 0.100928 0.0484049
8 tvvp missing 5.53998
9 tvq missing 1.51591
10 Ω₄,₄ missing 0.423495
11 Ω₅,₅ missing 0.244731

We perform a likelihood ratio test to compare the two nested models. The test statistic and the \(p\)-value clearly indicate that a 2-compartment model should be preferred.

lrtest(pkfit_1cmp, pkfit_2cmp)
Statistic:          1200.0
Degrees of freedom:      4
P-value:               0.0

We should also compare the other metrics and statistics, such ηshrinkage, ϵshrinkage, aic, and bic using the metrics_table function.

@chain metrics_table(pkfit_2cmp) begin
    leftjoin(metrics_table(pkfit_1cmp); on = :Metric, makeunique = true)
    rename!(:Value => :pk2cmp, :Value_1 => :pk1cmp)
end
WARNING: using deprecated binding Distributions.MatrixReshaped in Pumas.
, use Distributions.ReshapedDistribution{2, S, D} where D<:Distributions.Distribution{Distributions.ArrayLikeVariate{1}, S} where S<:Distributions.ValueSupport instead.
20×3 DataFrame
Row Metric pk2cmp pk1cmp
String Any Any
1 Successful true true
2 Estimation Time 16.08 3.115
3 Subjects 120 120
4 Fixed Parameters 1 1
5 Optimized Parameters 10 6
6 Conc Active Observations 1320 1320
7 Conc Missing Observations 0 0
8 Total Active Observations 1320 1320
9 Total Missing Observations 0 0
10 Likelihood Approximation Pumas.FOCE{Optim.NewtonTrustRegion{Float64}, Optim.Options{Float64, Nothing}} Pumas.FOCE{Optim.NewtonTrustRegion{Float64}, Optim.Options{Float64, Nothing}}
11 LogLikelihood (LL) 1830.63 1231.19
12 -2LL -3661.26 -2462.38
13 AIC -3641.26 -2450.38
14 BIC -3589.41 -2419.26
15 (η-shrinkage) η₁ 0.037 0.016
16 (η-shrinkage) η₂ 0.047 0.04
17 (η-shrinkage) η₃ 0.516 0.733
18 (ϵ-shrinkage) Conc 0.185 0.105
19 (η-shrinkage) η₄ 0.287 missing
20 (η-shrinkage) η₅ 0.154 missing

We next generate some goodness of fit plots to compare which model is performing better. To do this, we first inspect the diagnostics of our model fit.

res_inspect_1cmp = inspect(pkfit_1cmp)
[ Info: Calculating predictions.
[ Info: Calculating weighted residuals.
[ Info: Calculating empirical bayes.
[ Info: Evaluating individual parameters.
[ Info: Evaluating dose control parameters.
[ Info: Done.
FittedPumasModelInspection

Fitting was successful: true
Likehood approximation used for weighted residuals: FOCE
res_inspect_2cmp = inspect(pkfit_2cmp)
[ Info: Calculating predictions.
[ Info: Calculating weighted residuals.
[ Info: Calculating empirical bayes.
[ Info: Evaluating individual parameters.
[ Info: Evaluating dose control parameters.
[ Info: Done.
FittedPumasModelInspection

Fitting was successful: true
Likehood approximation used for weighted residuals: FOCE
gof_1cmp = goodness_of_fit(res_inspect_1cmp; figure = (; fontsize = 12))

A 4-mosaic goodness of fit plot showing the 1-compartment model

Goodness of Fit Plots
gof_2cmp = goodness_of_fit(res_inspect_2cmp; figure = (; fontsize = 12))

Trend plot with observations for all individual subjects over time

Subject Fits

These plots clearly indicate that the 2-compartment model is a better fit compared to the 1-compartment model.

We can look at selected sample of individual plots.

fig_subject_fits = subject_fits(
    res_inspect_2cmp;
    separate = true,
    paginate = true,
    facet = (; combinelabels = true),
    figure = (; fontsize = 18),
    axis = (; xlabel = "Time (hr)", ylabel = "CTMx Concentration (ng/mL)"),
)
fig_subject_fits[1]

Trend plot with observations for 4 individual subjects over time

Subject Fits for 4 Individuals

There a lot of important plotting functions you can use for your standard model diagnostics. Please make sure to read the documentation for plotting. Below, we are checking the distribution of the empirical Bayes estimates.

empirical_bayes_dist(res_inspect_2cmp; zeroline_color = :red)

A histogram for the empirical Bayes distribution of all subject-specific parameters

Empirical Bayes Distribution
empirical_bayes_vs_covariates(
    res_inspect_2cmp;
    categorical = [:Dose],
    figure = (; size = (600, 800)),
)

A histogram for the empirical Bayes distribution of all subject-specific parameters stratified by categorical covariates

Empirical Bayes Distribution Stratified by Covariates

Clearly, our guess at tvka seems off-target. Let’s try and estimate tvka instead of fixing it to 2:

pkfit_2cmp_unfix_ka = fit(pk_2cmp, pkpain_noplb, init_params(pk_2cmp), FOCE())
[ Info: Checking the initial parameter values.
[ Info: The initial negative log likelihood and its gradient are finite. Check passed.
Iter     Function value   Gradient norm 
     0    -3.200734e+02     1.272671e+03
 * time: 7.891654968261719e-5
     1    -8.682982e+02     1.000199e+03
 * time: 0.38803911209106445
     2    -1.381870e+03     5.008081e+02
 * time: 0.665410041809082
     3    -1.551053e+03     6.833490e+02
 * time: 1.0081279277801514
     4    -1.680887e+03     1.834586e+02
 * time: 1.3705010414123535
     5    -1.726118e+03     8.870274e+01
 * time: 1.656275987625122
     6    -1.761023e+03     1.162036e+02
 * time: 1.9776599407196045
     7    -1.786619e+03     1.114552e+02
 * time: 2.3508710861206055
     8    -1.863556e+03     9.914305e+01
 * time: 2.7152631282806396
     9    -1.882942e+03     5.342676e+01
 * time: 3.027729034423828
    10    -1.888020e+03     2.010181e+01
 * time: 3.3563249111175537
    11    -1.889832e+03     1.867263e+01
 * time: 3.6934261322021484
    12    -1.891649e+03     1.668512e+01
 * time: 4.043851137161255
    13    -1.892615e+03     1.820701e+01
 * time: 4.343408107757568
    14    -1.893453e+03     1.745195e+01
 * time: 4.673681020736694
    15    -1.894760e+03     1.850174e+01
 * time: 5.008831024169922
    16    -1.895647e+03     1.773939e+01
 * time: 5.314917087554932
    17    -1.896597e+03     1.143462e+01
 * time: 5.646423101425171
    18    -1.897114e+03     9.720097e+00
 * time: 5.980987071990967
    19    -1.897373e+03     6.054321e+00
 * time: 6.32171893119812
    20    -1.897498e+03     3.985954e+00
 * time: 6.621455907821655
    21    -1.897571e+03     4.262464e+00
 * time: 6.942906141281128
    22    -1.897633e+03     4.010234e+00
 * time: 7.266041994094849
    23    -1.897714e+03     4.805375e+00
 * time: 7.606940031051636
    24    -1.897802e+03     3.508706e+00
 * time: 7.880497932434082
    25    -1.897865e+03     3.691477e+00
 * time: 8.188921928405762
    26    -1.897900e+03     2.982720e+00
 * time: 8.500308990478516
    27    -1.897928e+03     2.563790e+00
 * time: 8.768222093582153
    28    -1.897968e+03     3.261485e+00
 * time: 9.067466974258423
    29    -1.898013e+03     3.064690e+00
 * time: 9.373943090438843
    30    -1.898040e+03     1.636525e+00
 * time: 9.653475999832153
    31    -1.898051e+03     1.439997e+00
 * time: 9.955456018447876
    32    -1.898057e+03     1.436504e+00
 * time: 10.25761103630066
    33    -1.898069e+03     1.881529e+00
 * time: 10.536664009094238
    34    -1.898095e+03     3.253165e+00
 * time: 10.835961103439331
    35    -1.898142e+03     4.257942e+00
 * time: 11.144325017929077
    36    -1.898199e+03     3.685241e+00
 * time: 11.466082096099854
    37    -1.898245e+03     2.567364e+00
 * time: 11.753401041030884
    38    -1.898246e+03     2.561591e+00
 * time: 12.213911056518555
    39    -1.898251e+03     2.530888e+00
 * time: 12.654190063476562
    40    -1.898298e+03     2.673696e+00
 * time: 12.979318141937256
    41    -1.898300e+03     2.794639e+00
 * time: 13.374545097351074
    42    -1.898337e+03     3.751590e+00
 * time: 13.823671102523804
    43    -1.898421e+03     4.878407e+00
 * time: 14.114184141159058
    44    -1.898433e+03     4.391719e+00
 * time: 14.504771947860718
    45    -1.898437e+03     4.216518e+00
 * time: 14.987046957015991
    46    -1.898442e+03     4.108397e+00
 * time: 15.464278936386108
    47    -1.898446e+03     3.934902e+00
 * time: 15.946290969848633
    48    -1.898449e+03     3.769838e+00
 * time: 16.415061950683594
    49    -1.898450e+03     3.739486e+00
 * time: 16.879157066345215
    50    -1.898450e+03     3.712049e+00
 * time: 17.38701605796814
    51    -1.898457e+03     3.623436e+00
 * time: 17.82193899154663
    52    -1.898471e+03     2.668312e+00
 * time: 18.123503923416138
    53    -1.898479e+03     2.302438e+00
 * time: 18.43650794029236
    54    -1.898480e+03     2.386566e-01
 * time: 18.770286083221436
    55    -1.898480e+03     7.802040e-01
 * time: 19.096543073654175
    56    -1.898480e+03     7.369786e-01
 * time: 19.569113969802856
    57    -1.898480e+03     5.113191e-01
 * time: 19.92940402030945
    58    -1.898480e+03     3.067709e-01
 * time: 20.227787971496582
    59    -1.898480e+03     3.076791e-01
 * time: 20.535234928131104
    60    -1.898480e+03     3.102066e-01
 * time: 20.807610034942627
    61    -1.898480e+03     3.102066e-01
 * time: 21.19808292388916
    62    -1.898480e+03     3.102069e-01
 * time: 21.65511202812195
    63    -1.898480e+03     3.102071e-01
 * time: 22.308634042739868
    64    -1.898480e+03     3.102074e-01
 * time: 22.99835991859436
    65    -1.898480e+03     3.102076e-01
 * time: 23.670094966888428
    66    -1.898480e+03     3.102079e-01
 * time: 24.33946394920349
    67    -1.898480e+03     3.102081e-01
 * time: 25.008193016052246
    68    -1.898480e+03     3.102081e-01
 * time: 25.732465028762817
    69    -1.898480e+03     3.102081e-01
 * time: 26.41623592376709
    70    -1.898480e+03     3.102082e-01
 * time: 27.105570077896118
    71    -1.898480e+03     3.102082e-01
 * time: 27.772220134735107
    72    -1.898480e+03     3.102082e-01
 * time: 28.503803968429565
    73    -1.898480e+03     3.102102e-01
 * time: 29.14321804046631
    74    -1.898480e+03     3.102102e-01
 * time: 29.667341947555542
    75    -1.898480e+03     3.102096e-01
 * time: 30.139205932617188
    76    -1.898480e+03     3.102096e-01
 * time: 30.63081693649292
    77    -1.898480e+03     3.125688e-01
 * time: 31.074469089508057
    78    -1.898480e+03     3.125640e-01
 * time: 31.540791988372803
    79    -1.898480e+03     3.125618e-01
 * time: 31.98486304283142
    80    -1.898480e+03     3.125615e-01
 * time: 32.47225594520569
    81    -1.898480e+03     3.125612e-01
 * time: 32.96148490905762
    82    -1.898480e+03     3.125610e-01
 * time: 33.45078802108765
    83    -1.898480e+03     3.125609e-01
 * time: 33.992510080337524
    84    -1.898480e+03     3.125604e-01
 * time: 34.46971392631531
    85    -1.898480e+03     3.125602e-01
 * time: 34.93372201919556
    86    -1.898480e+03     3.125602e-01
 * time: 35.43762397766113
    87    -1.898480e+03     3.125602e-01
 * time: 36.12368297576904
    88    -1.898480e+03     3.125602e-01
 * time: 36.85410809516907
    89    -1.898480e+03     3.125602e-01
 * time: 37.6022469997406
    90    -1.898480e+03     3.125602e-01
 * time: 38.309152126312256
    91    -1.898480e+03     3.125602e-01
 * time: 39.029808044433594
    92    -1.898480e+03     3.125602e-01
 * time: 39.52189898490906
    93    -1.898480e+03     3.125602e-01
 * time: 40.03590703010559
    94    -1.898480e+03     3.125602e-01
 * time: 40.518938064575195
    95    -1.898480e+03     1.387453e-01
 * time: 40.87332105636597
    96    -1.898480e+03     1.387453e-01
 * time: 41.2874231338501
    97    -1.898480e+03     1.387453e-01
 * time: 41.791964054107666
    98    -1.898480e+03     1.387453e-01
 * time: 42.35070013999939
    99    -1.898480e+03     1.387453e-01
 * time: 42.72648000717163
FittedPumasModel

Successful minimization:                      true

Likelihood approximation:                     FOCE
Likelihood Optimizer:                         BFGS
Dynamical system type:                 Closed form

Log-likelihood value:                    1898.4797
Number of subjects:                            120
Number of parameters:         Fixed      Optimized
                                  0             11
Observation records:         Active        Missing
    Conc:                      1320              0
    Total:                     1320              0

-------------------
         Estimate
-------------------
tvcl      2.6191
tvv      11.378
tvvp      8.453
tvq       1.3164
tvka      4.8926
Ω₁,₁      0.13243
Ω₂,₂      0.059669
Ω₃,₃      0.41581
Ω₄,₄      0.080679
Ω₅,₅      0.24996
σ_p       0.049097
-------------------
compare_estimates(; pkfit_2cmp, pkfit_2cmp_unfix_ka)
11×3 DataFrame
Row parameter pkfit_2cmp pkfit_2cmp_unfix_ka
String Float64? Float64?
1 tvcl 2.81378 2.6191
2 tvv 11.0046 11.3784
3 tvvp 5.53998 8.45297
4 tvq 1.51591 1.31637
5 tvka 2.0 4.89257
6 Ω₁,₁ 0.102669 0.132432
7 Ω₂,₂ 0.0607757 0.0596693
8 Ω₃,₃ 1.20115 0.415811
9 Ω₄,₄ 0.423495 0.0806789
10 Ω₅,₅ 0.244731 0.249956
11 σ_p 0.0484049 0.0490975

Let’s revaluate the goodness of fits and η distribution plots.

Not much change in the general gof plots

res_inspect_2cmp_unfix_ka = inspect(pkfit_2cmp_unfix_ka)
[ Info: Calculating predictions.
[ Info: Calculating weighted residuals.
[ Info: Calculating empirical bayes.
[ Info: Evaluating individual parameters.
[ Info: Evaluating dose control parameters.
[ Info: Done.
FittedPumasModelInspection

Fitting was successful: true
Likehood approximation used for weighted residuals: FOCE
goodness_of_fit(res_inspect_2cmp_unfix_ka; figure = (; fontsize = 12))

A 4-mosaic goodness of fit plot showing the 2-compartment model

Goodness of Fit Plots

But you can see a huge improvement in the ηka, (η₃) distribution which is now centered around zero

empirical_bayes_vs_covariates(
    res_inspect_2cmp_unfix_ka;
    categorical = [:Dose],
    ebes = [:η₃],
    figure = (; size = (600, 800)),
)

A histogram for the empirical Bayes distribution of all subject-specific parameters stratified by categorical covariates

Empirical Bayes Distribution Stratified by Covariates

Finally looking at some individual plots for the same subjects as earlier:

fig_subject_fits2 = subject_fits(
    res_inspect_2cmp_unfix_ka;
    separate = true,
    paginate = true,
    facet = (; combinelabels = true, linkyaxes = false),
    figure = (; fontsize = 18),
    axis = (; xlabel = "Time (hr)", ylabel = "CTMx Concentration (ng/mL)"),
)
fig_subject_fits2[6]

Trend plot with observations for 4 individual subjects over time

Subject Fits for 4 Individuals

The randomly sampled individual fits don’t seem good in some individuals, but we can evaluate this via a vpc to see how to go about.

3.4 Visual Predictive Checks (VPC)

We can now perform a vpc to check. The default plots provide a 80% prediction interval and a 95% simulated CI (shaded area) around each of the quantiles

pk_vpc = vpc(
    pkfit_2cmp_unfix_ka,
    200;
    observations = [:Conc],
    stratify_by = [:Dose],
    ensemblealg = EnsembleThreads(), # multi-threading
)
[ Info: Continuous VPC
Visual Predictive Check
  Type of VPC: Continuous VPC
  Simulated populations: 200
  Subjects in data: 120
  Stratification variable(s): [:Dose]
  Confidence level: 0.95
  VPC lines: quantiles ([0.1, 0.5, 0.9])
vpc_plot(
    pk_2cmp,
    pk_vpc;
    rows = 1,
    columns = 3,
    figure = (; size = (1400, 1000), fontsize = 22),
    axis = (;
        xlabel = "Time (hr)",
        ylabel = "Observed/Predicted\n CTMx Concentration (ng/mL)",
    ),
    facet = (; combinelabels = true),
)

A visual predictive plot stratified by dose group

Visual Predictive Plots

The visual predictive check suggests that the model captures the data well across all dose levels.

4 Additional Help

If you have questions regarding this tutorial, please post them on our discourse site.