A Comprehensive Introduction to Pumas

Authors

Vijay Ivaturi

Jose Storopoli

This tutorial provides a comprehensive introduction to a modeling and simulation workflow in Pumas. The idea is not to get into the details of Pumas specifics, but instead provide a narrative on the lines of a regular workflow in our day-to-day work, with brevity where required to allow a broad overview. Wherever possible, cross-references will be provided to documentation and detailed examples that provide deeper insight into a particular topic.

As part of this workflow, you will be introduced to various aspects such as:

  1. Data wrangling in Julia
  2. Exploratory analysis in Julia
  3. Continuous data non-linear mixed effects modeling in Pumas
  4. Model comparison routines, post-processing, validation etc.

1 The Study and Design

CTMNopain is a novel anti-inflammatory agent under preliminary investigation. A dose-ranging trial was conducted comparing placebo with 3 doses of CTMNopain (5mg, 20mg and 80 mg QD). The maximum tolerated dose is 160 mg per day. Plasma concentrations (mg/L) of the drug were measured at 0, 0.5, 1, 1.5, 2, 2.5, 3-8 hours.

Pain score (0=no pain, 1=mild, 2=moderate, 3=severe) were obtained at time points when plasma concentration was collected. A pain score of 2 or more is considered as no pain relief.

The subjects can request for remedication if pain relief is not achieved after 2 hours post dose. Some subjects had remedication before 2 hours if they were not able to bear the pain. The time to remedication and the remedication status is available for subjects.

The pharmacokinetic dataset can be accessed using PharmaDatasets.jl.

2 Setup

2.1 Load libraries

These libraries provide the workhorse functionality in the Pumas ecosystem:

using Pumas
using PumasUtilities
using NCA
using NCAUtilities

In addition, libraries below are good add-on’s that provide ancillary functionality:

using GLM: lm, @formula
using Random
using CSV
using DataFramesMeta
using CairoMakie
using PharmaDatasets

2.2 Data Wrangling

We start by reading in the dataset and making some quick summaries.

Tip

If you want to learn more about data wrangling, don’t forget to check our Data Wrangling in Julia tutorials!

pkpain_df = dataset("pk_painrelief")
first(pkpain_df, 5)
5×7 DataFrame
Row Subject Time Conc PainRelief PainScore RemedStatus Dose
Int64 Float64 Float64 Int64 Int64 Int64 String7
1 1 0.0 0.0 0 3 1 20 mg
2 1 0.5 1.15578 1 1 0 20 mg
3 1 1.0 1.37211 1 0 0 20 mg
4 1 1.5 1.30058 1 0 0 20 mg
5 1 2.0 1.19195 1 1 0 20 mg

Let’s filter out the placebo data as we don’t need that for the PK analysis.

pkpain_noplb_df = @rsubset pkpain_df :Dose != "Placebo";
first(pkpain_noplb_df, 5)
5×7 DataFrame
Row Subject Time Conc PainRelief PainScore RemedStatus Dose
Int64 Float64 Float64 Int64 Int64 Int64 String7
1 1 0.0 0.0 0 3 1 20 mg
2 1 0.5 1.15578 1 1 0 20 mg
3 1 1.0 1.37211 1 0 0 20 mg
4 1 1.5 1.30058 1 0 0 20 mg
5 1 2.0 1.19195 1 1 0 20 mg

3 Analysis

3.1 Non-compartmental analysis

Let’s begin by performing a quick NCA of the concentration time profiles and view the exposure changes across doses. The input data specification for NCA analysis requires the presence of a :route column and an :amt column that specifies the dose. So, let’s add that in:

@rtransform! pkpain_noplb_df begin
    :route = "ev"
    :Dose = parse(Int, chop(:Dose; tail = 3))
end

We also need to create an :amt column:

@rtransform! pkpain_noplb_df :amt = :Time == 0 ? :Dose : missing

Now, we map the data variables to the read_nca function that prepares the data for NCA analysis.

pkpain_nca = read_nca(
    pkpain_noplb_df;
    id = :Subject,
    time = :Time,
    amt = :amt,
    observations = :Conc,
    group = [:Dose],
    route = :route,
)
NCAPopulation (120 subjects):
  Group: [["Dose" => 5], ["Dose" => 20], ["Dose" => 80]]
  Number of missing observations: 0
  Number of blq observations: 0

Now that we mapped the data in, let’s visualize the concentration vs time plots for a few individuals. When paginate is set to true, a vector of plots are returned and below we display the first element with 9 individuals.

f = observations_vs_time(
    pkpain_nca;
    paginate = true,
    axis = (; xlabel = "Time (hr)", ylabel = "CTMNoPain Concentration (ng/mL)"),
    facet = (; combinelabels = true),
)
f[1]

An observations versus time profile for all subjects

Observations versus Time

or you can view the summary curves by dose group as passed in to the group argument in read_nca

summary_observations_vs_time(
    pkpain_nca,
    figure = (; fontsize = 22, size = (800, 1000)),
    color = "black",
    linewidth = 3,
    axis = (; xlabel = "Time (hr)", ylabel = "CTMX Concentration (μg/mL)"),
    facet = (; combinelabels = true, linkaxes = true),
)

An observations versus time profile for all subjects in a summarized manner

Summary Observations versus Time

A full NCA Report is now obtained for completeness purposes using the run_nca function, but later we will only extract a couple of key metrics of interest.

pk_nca = run_nca(pkpain_nca; sigdigits = 3)

We can look at the NCA fits for some subjects. Here f is a vector or figures. We’ll showcase the first image by indexing f:

f = subject_fits(
    pk_nca,
    paginate = true,
    axis = (; xlabel = "Time (hr)", ylabel = "CTMX Concentration (μg/mL)"),
    facet = (; combinelabels = true, linkaxes = true),
)
f[1]

Trend plot with observations for all individual subjects over time

Subject Fits

As CTMNopain’s effect maybe mainly related to maximum concentration (cmax) or area under the curve (auc), we present some summary statistics using the summarize function from NCA.

strata = [:Dose]
1-element Vector{Symbol}:
 :Dose
params = [:cmax, :aucinf_obs]
2-element Vector{Symbol}:
 :cmax
 :aucinf_obs
output = summarize(pk_nca; stratify_by = strata, parameters = params)
6×10 DataFrame
Row Dose parameters numsamples minimum maximum mean std geomean geostd geomeanCV
Int64 String Int64 Float64 Float64 Float64 Float64 Float64 Float64 Float64
1 5 cmax 40 0.19 0.539 0.356075 0.0884129 0.345104 1.2932 26.1425
2 5 aucinf_obs 40 0.914 3.4 1.5979 0.490197 1.53373 1.32974 29.0868
3 20 cmax 40 0.933 2.7 1.4737 0.361871 1.43408 1.2633 23.6954
4 20 aucinf_obs 40 2.77 14.1 6.377 2.22239 6.02031 1.41363 35.6797
5 80 cmax 40 3.3 8.47 5.787 1.31957 5.64164 1.25757 23.2228
6 80 aucinf_obs 40 13.7 49.1 29.5 8.68984 28.2954 1.34152 30.0258

The statistics printed above are the default, but you can pass in your own statistics using the stats = [] argument to the summarize function.

We can look at a few parameter distribution plots.

parameters_vs_group(
    pk_nca,
    parameter = :cmax,
    axis = (; xlabel = "Dose (mg)", ylabel = "Cₘₐₓ (ng/mL)"),
    figure = (; fontsize = 18),
)

A violin plot for the Cmax distribution for each dose group

Cmax for each Dose Group

Dose normalized PK parameters, cmax and aucinf were essentially dose proportional between for 5 mg, 20 mg and 80 mg doses. You can perform a simple regression to check the impact of dose on cmax:

dp = NCA.DoseLinearityPowerModel(pk_nca, :cmax; level = 0.9)
Dose Linearity Power Model
Variable: cmax
Model: log(cmax) ~ log(α) + β × log(dose)
────────────────────────────────────
   Estimate  low CI 90%  high CI 90%
────────────────────────────────────
β   1.00775     0.97571       1.0398
────────────────────────────────────

Here’s a visualization for the dose linearity using a power model for cmax:

power_model(dp)

A dose linearity power model plot for Cmax

Dose Linearity Plot

We can also visualize a dose proportionality results with respect to a specific endpoint in a NCA Report; for example cmax and aucinf_obs:

dose_vs_dose_normalized(pk_nca, :cmax)

A dose proportionality plot for Cmax

Dose Proportionality Plot
dose_vs_dose_normalized(pk_nca, :aucinf_obs)

A dose proportionality plot for AUC

Dose Proportionality Plot

Based on visual inspection of the concentration time profiles as seen earlier, CTMNopain exhibited monophasic decline, and perhaps a one compartment model best fits the PK data.

3.2 Pharmacokinetic modeling

As seen from the plots above, the concentrations decline monoexponentially. We will evaluate both one and two compartment structural models to assess best fit. Further, different residual error models will also be tested.

We will use the results from NCA to provide us good initial estimates.

3.2.1 Data preparation for modeling

PumasNDF requires the presence of :evid and :cmt columns in the dataset.

@rtransform! pkpain_noplb_df begin
    :evid = :Time == 0 ? 1 : 0
    :cmt = :Time == 0 ? 1 : 2
    :cmt2 = 1 # for zero order absorption
end

Further, observations at time of dosing, i.e., when evid = 1 have to be missing

@rtransform! pkpain_noplb_df :Conc = :evid == 1 ? missing : :Conc

The dataframe will now be converted to a Population using read_pumas. Note that both observations and covariates are required to be an array even if it is one element.

pkpain_noplb = read_pumas(
    pkpain_noplb_df;
    id = :Subject,
    time = :Time,
    amt = :amt,
    observations = [:Conc],
    covariates = [:Dose],
    evid = :evid,
    cmt = :cmt,
)
Population
  Subjects: 120
  Covariates: Dose
  Observations: Conc

Now that the data is transformed to a Population of subjects, we can explore different models.

3.2.2 One-compartment model

Note

If you are not familiar yet with the @model blocks and syntax, please check our documentation.

pk_1cmp = @model begin

    @metadata begin
        desc = "One Compartment Model"
        timeu = u"hr"
    end

    @param begin
        """
        Clearance (L/hr)
        """
        tvcl  RealDomain(; lower = 0, init = 3.2)
        """
        Volume (L)
        """
        tvv  RealDomain(; lower = 0, init = 16.4)
        """
        Absorption rate constant (h-1)
        """
        tvka  RealDomain(; lower = 0, init = 3.8)
        """
          - ΩCL
          - ΩVc
          - ΩKa
        """
        Ω  PDiagDomain(init = [0.04, 0.04, 0.04])
        """
        Proportional RUV
        """
        σ_p  RealDomain(; lower = 0.0001, init = 0.2)
    end

    @random begin
        η ~ MvNormal(Ω)
    end

    @covariates begin
        """
        Dose (mg)
        """
        Dose
    end

    @pre begin
        CL = tvcl * exp(η[1])
        Vc = tvv * exp(η[2])
        Ka = tvka * exp(η[3])
    end

    @dynamics Depots1Central1

    @derived begin
        cp := @. Central / Vc
        """
        CTMx Concentration (ng/mL)
        """
        Conc ~ @. Normal(cp, abs(cp) * σ_p)
    end

end
┌ Warning: Covariate Dose is not used in the model.
└ @ Pumas ~/run/_work/PumasTutorials.jl/PumasTutorials.jl/custom_julia_depot/packages/Pumas/aZRyj/src/dsl/model_macro.jl:2856
PumasModel
  Parameters: tvcl, tvv, tvka, Ω, σ_p
  Random effects: η
  Covariates: Dose
  Dynamical system variables: Depot, Central
  Dynamical system type: Closed form
  Derived: Conc
  Observed: Conc
Tip

Note that the local assignment := can be used to define intermediate statements that will not be carried outside of the block. This means that all the resulting data workflows from this model will not contain the intermediate variables defined with :=. We use this when we want to suppress the variable from any further output.

The idea behind := is for performance reasons. If you are not carrying the variable defined with := outside of the block, then it is not necessary to store it in the resulting data structures. Not only will your model run faster, but the resulting data structures will also be smaller.

Before going to fit the model, let’s evaluate some helpful steps via simulation to check appropriateness of data and model

# zero out the random effects
etas = zero_randeffs(pk_1cmp, init_params(pk_1cmp), pkpain_noplb)

Above, we are generating a vector of η’s of the same length as the number of subjects to zero out the random effects. We do this as we are evaluating the trajectories of the concentrations at the initial set of parameters at a population level. Other helper functions here are sample_randeffs and init_randeffs. Please refer to the documentation.

simpk_iparams = simobs(pk_1cmp, pkpain_noplb, init_params(pk_1cmp), etas)
Simulated population (Vector{<:Subject})
  Simulated subjects: 120
  Simulated variables: Conc
sim_plot(
    pk_1cmp,
    simpk_iparams;
    observations = [:Conc],
    figure = (; fontsize = 18),
    axis = (;
        xlabel = "Time (hr)",
        ylabel = "Observed/Predicted \n CTMx Concentration (ng/mL)",
    ),
)

A simulated observations versus time plot overlaid with the scatter plot of the observed observations

Simulated Observations Plot

Our NCA based initial guess on the parameters seem to work well.

Lets change the initial estimate of a couple of the parameters to evaluate the sensitivity.

pkparam = (; init_params(pk_1cmp)..., tvka = 2, tvv = 10)
(tvcl = 3.2,
 tvv = 10,
 tvka = 2,
 Ω = [0.04 0.0 0.0; 0.0 0.04 0.0; 0.0 0.0 0.04],
 σ_p = 0.2,)
simpk_changedpars = simobs(pk_1cmp, pkpain_noplb, pkparam, etas)
Simulated population (Vector{<:Subject})
  Simulated subjects: 120
  Simulated variables: Conc
sim_plot(
    pk_1cmp,
    simpk_changedpars;
    observations = [:Conc],
    figure = (; fontsize = 18),
    axis = (
        xlabel = "Time (hr)",
        ylabel = "Observed/Predicted \n CTMx Concentration (ng/mL)",
    ),
)

A simulated observations versus time plot overlaid with the scatter plot of the observed observations

Simulated Observations Plot

Changing the tvka and decreasing the tvv seemed to make an impact and observations go through the simulated lines.

To get a quick ballpark estimate of your PK parameters, we can do a NaivePooled analysis.

3.2.2.1 NaivePooled
pkfit_np = fit(pk_1cmp, pkpain_noplb, init_params(pk_1cmp), NaivePooled(); omegas = (:Ω,))
[ Info: Checking the initial parameter values.
[ Info: The initial negative log likelihood and its gradient are finite. Check passed.
Iter     Function value   Gradient norm 
     0     7.744356e+02     3.715711e+03
 * time: 0.027987957000732422
     1     2.343899e+02     1.747348e+03
 * time: 0.9532840251922607
     2     9.696232e+01     1.198088e+03
 * time: 0.9572150707244873
     3    -7.818699e+01     5.538151e+02
 * time: 0.9602971076965332
     4    -1.234803e+02     2.462514e+02
 * time: 0.9632959365844727
     5    -1.372888e+02     2.067458e+02
 * time: 0.9658751487731934
     6    -1.410579e+02     1.162950e+02
 * time: 0.9683570861816406
     7    -1.434754e+02     5.632816e+01
 * time: 0.970829963684082
     8    -1.453401e+02     7.859270e+01
 * time: 0.9737300872802734
     9    -1.498185e+02     1.455606e+02
 * time: 0.976639986038208
    10    -1.534371e+02     1.303682e+02
 * time: 0.9794831275939941
    11    -1.563557e+02     5.975474e+01
 * time: 0.9823429584503174
    12    -1.575052e+02     9.308611e+00
 * time: 0.985008955001831
    13    -1.579357e+02     1.234484e+01
 * time: 0.9877109527587891
    14    -1.581874e+02     7.478196e+00
 * time: 0.9904570579528809
    15    -1.582981e+02     2.027162e+00
 * time: 0.9931659698486328
    16    -1.583375e+02     5.578262e+00
 * time: 0.9959421157836914
    17    -1.583556e+02     4.727050e+00
 * time: 0.9986741542816162
    18    -1.583644e+02     2.340173e+00
 * time: 1.0014240741729736
    19    -1.583680e+02     7.738100e-01
 * time: 1.0041749477386475
    20    -1.583696e+02     3.300689e-01
 * time: 1.0069961547851562
    21    -1.583704e+02     3.641985e-01
 * time: 1.009817123413086
    22    -1.583707e+02     4.365901e-01
 * time: 1.012686014175415
    23    -1.583709e+02     3.887800e-01
 * time: 1.0155270099639893
    24    -1.583710e+02     2.766977e-01
 * time: 1.0183279514312744
    25    -1.583710e+02     1.758029e-01
 * time: 1.0208020210266113
    26    -1.583710e+02     1.133947e-01
 * time: 1.0235049724578857
    27    -1.583710e+02     7.922544e-02
 * time: 1.025979995727539
    28    -1.583710e+02     5.954998e-02
 * time: 1.0288059711456299
    29    -1.583710e+02     4.157079e-02
 * time: 1.0317561626434326
    30    -1.583710e+02     4.295447e-02
 * time: 1.0346770286560059
    31    -1.583710e+02     5.170753e-02
 * time: 1.0375621318817139
    32    -1.583710e+02     2.644383e-02
 * time: 1.0413401126861572
    33    -1.583710e+02     4.548993e-03
 * time: 1.045241117477417
    34    -1.583710e+02     2.501804e-02
 * time: 1.0490081310272217
    35    -1.583710e+02     3.763440e-02
 * time: 1.0519189834594727
    36    -1.583710e+02     3.206026e-02
 * time: 1.0547480583190918
    37    -1.583710e+02     1.003698e-02
 * time: 1.057569980621338
    38    -1.583710e+02     2.209089e-02
 * time: 1.06050705909729
    39    -1.583710e+02     4.954172e-03
 * time: 1.0633809566497803
    40    -1.583710e+02     1.609373e-02
 * time: 1.0672039985656738
    41    -1.583710e+02     1.579802e-02
 * time: 1.0700960159301758
    42    -1.583710e+02     1.014113e-03
 * time: 1.0729761123657227
    43    -1.583710e+02     6.050644e-03
 * time: 1.076789140701294
    44    -1.583710e+02     1.354412e-02
 * time: 1.0796821117401123
    45    -1.583710e+02     4.473248e-03
 * time: 1.0825550556182861
    46    -1.583710e+02     4.644735e-03
 * time: 1.0854289531707764
    47    -1.583710e+02     9.829910e-03
 * time: 1.0883369445800781
    48    -1.583710e+02     1.047561e-03
 * time: 1.0912880897521973
    49    -1.583710e+02     8.366895e-03
 * time: 1.0942180156707764
    50    -1.583710e+02     7.879055e-04
 * time: 1.0971190929412842
FittedPumasModel

Successful minimization:                      true

Likelihood approximation:              NaivePooled
Likelihood Optimizer:                         BFGS
Dynamical system type:                 Closed form

Log-likelihood value:                    158.37103
Number of subjects:                            120
Number of parameters:         Fixed      Optimized
                                  1              6
Observation records:         Active        Missing
    Conc:                      1320              0
    Total:                     1320              0

------------------
         Estimate
------------------
tvcl      3.0054
tvv      14.089
tvka     44.228
Ω₁,₁      0.0
Ω₂,₂      0.0
Ω₃,₃      0.0
σ_p       0.32999
------------------
coefficients_table(pkfit_np)
7×3 DataFrame
Row Parameter Description Estimate
String Abstract… Float64
1 tvcl Clearance (L/hr)\n 3.005
2 tvv Volume (L)\n 14.089
3 tvka Absorption rate constant (h-1)\n 44.228
4 Ω₁,₁ ΩCL 0.0
5 Ω₂,₂ ΩVc 0.0
6 Ω₃,₃ ΩKa 0.0
7 σ_p Proportional RUV\n 0.33

The final estimates from the NaivePooled approach seem reasonably close to our initial guess from NCA, except for the tvka parameter. We will stick with our initial guess.

One way to be cautious before going into a complete fitting routine is to evaluate the likelihood of the individual subjects given the initial parameter values and see if any subject(s) pops out as unreasonable. There are a few ways of doing this:

  • check the loglikelihood subject wise
  • check if there any influential subjects

Below, we are basically checking if the initial estimates for any subject are way off that we are unable to compute the initial loglikelihood.

lls = []
for subj in pkpain_noplb
    push!(lls, loglikelihood(pk_1cmp, subj, pkparam, FOCE()))
end
# the plot below is using native CairoMakie `hist`
hist(lls; bins = 10, normalization = :none, color = (:black, 0.5))

A histogram of the individual loglikelihoods

Histogram of Loglikelihoods

The distribution of the loglikelihood’s suggest no extreme outliers.

A more convenient way is to use the findinfluential function that provides a list of k top influential subjects by showing the normalized (minus) loglikelihood for each subject. As you can see below, the minus loglikelihood in the range of 16 agrees with the histogram plotted above.

influential_subjects = findinfluential(pk_1cmp, pkpain_noplb, pkparam, FOCE())
120-element Vector{@NamedTuple{id::String, nll::Float64}}:
 (id = "148", nll = 16.65965885684477)
 (id = "135", nll = 16.648985190076335)
 (id = "156", nll = 15.959069556607496)
 (id = "159", nll = 15.441218240496484)
 (id = "149", nll = 14.71513464411951)
 (id = "88", nll = 13.09709837464614)
 (id = "16", nll = 12.98228052193144)
 (id = "61", nll = 12.652182902303679)
 (id = "71", nll = 12.500330088085505)
 (id = "59", nll = 12.241510254805235)
 ⋮
 (id = "57", nll = -22.79767423253431)
 (id = "93", nll = -22.836900711478208)
 (id = "12", nll = -23.007742339519247)
 (id = "123", nll = -23.292751843079234)
 (id = "41", nll = -23.425412534960515)
 (id = "99", nll = -23.535214841901112)
 (id = "29", nll = -24.025959868383083)
 (id = "52", nll = -24.164757842493685)
 (id = "24", nll = -25.57209232565845)
3.2.2.2 FOCE

Now that we have a good handle on our data, lets go ahead and fit a population model with FOCE:

pkfit_1cmp = fit(pk_1cmp, pkpain_noplb, pkparam, FOCE(); constantcoef = (; tvka = 2))
[ Info: Checking the initial parameter values.
[ Info: The initial negative log likelihood and its gradient are finite. Check passed.
Iter     Function value   Gradient norm 
     0    -5.935351e+02     5.597318e+02
 * time: 7.605552673339844e-5
     1    -7.022088e+02     1.707063e+02
 * time: 0.3500559329986572
     2    -7.314067e+02     2.903269e+02
 * time: 0.5477230548858643
     3    -8.520591e+02     2.285888e+02
 * time: 0.8486390113830566
     4    -1.120191e+03     3.795410e+02
 * time: 1.1841399669647217
     5    -1.178784e+03     2.323978e+02
 * time: 1.3605549335479736
     6    -1.218320e+03     9.699907e+01
 * time: 1.535857915878296
     7    -1.223641e+03     5.862105e+01
 * time: 1.675379991531372
     8    -1.227620e+03     1.831403e+01
 * time: 1.8478319644927979
     9    -1.228381e+03     2.132323e+01
 * time: 2.0683600902557373
    10    -1.230098e+03     2.921228e+01
 * time: 2.2204511165618896
    11    -1.230854e+03     2.029662e+01
 * time: 2.3679521083831787
    12    -1.231116e+03     5.229097e+00
 * time: 2.5296781063079834
    13    -1.231179e+03     1.689232e+00
 * time: 2.7500901222229004
    14    -1.231187e+03     1.215379e+00
 * time: 2.8995139598846436
    15    -1.231188e+03     2.770380e-01
 * time: 3.0236079692840576
    16    -1.231188e+03     1.636653e-01
 * time: 3.144789934158325
    17    -1.231188e+03     2.701133e-01
 * time: 3.3010470867156982
    18    -1.231188e+03     3.163363e-01
 * time: 3.406359910964966
    19    -1.231188e+03     1.505149e-01
 * time: 3.5092921257019043
    20    -1.231188e+03     2.484999e-02
 * time: 3.6186721324920654
    21    -1.231188e+03     8.446863e-04
 * time: 3.7400400638580322
FittedPumasModel

Successful minimization:                      true

Likelihood approximation:                     FOCE
Likelihood Optimizer:                         BFGS
Dynamical system type:                 Closed form

Log-likelihood value:                     1231.188
Number of subjects:                            120
Number of parameters:         Fixed      Optimized
                                  1              6
Observation records:         Active        Missing
    Conc:                      1320              0
    Total:                     1320              0

-------------------
         Estimate
-------------------
tvcl      3.1642
tvv      13.288
tvka      2.0
Ω₁,₁      0.08494
Ω₂,₂      0.048568
Ω₃,₃      5.5811
σ_p       0.10093
-------------------
infer(pkfit_1cmp)
[ Info: Calculating: variance-covariance matrix.
[ Info: Done.
Asymptotic inference results using sandwich estimator

Successful minimization:                      true

Likelihood approximation:                     FOCE
Likelihood Optimizer:                         BFGS
Dynamical system type:                 Closed form

Log-likelihood value:                     1231.188
Number of subjects:                            120
Number of parameters:         Fixed      Optimized
                                  1              6
Observation records:         Active        Missing
    Conc:                      1320              0
    Total:                     1320              0

-------------------------------------------------------------------
        Estimate           SE                     95.0% C.I.
-------------------------------------------------------------------
tvcl     3.1642          0.08662          [ 2.9944  ;  3.334   ]
tvv     13.288           0.27481          [12.749   ; 13.827   ]
tvka     2.0             NaN              [  NaN    ;   NaN      ]
Ω₁,₁     0.08494         0.011022         [ 0.063338;  0.10654 ]
Ω₂,₂     0.048568        0.0063502        [ 0.036122;  0.061014]
Ω₃,₃     5.5811          1.2188           [ 3.1922  ;  7.97    ]
σ_p      0.10093         0.0057196        [ 0.089718;  0.11214 ]
-------------------------------------------------------------------

Notice that tvka is fixed to 2 as we don’t have a lot of information before tmax. From the results above, we see that the parameter precision for this model is reasonable.

3.2.3 Two-compartment model

Just to be sure, let’s fit a 2-compartment model and evaluate:

pk_2cmp = @model begin

    @param begin
        """
        Clearance (L/hr)
        """
        tvcl  RealDomain(; lower = 0, init = 3.2)
        """
        Central Volume (L)
        """
        tvv  RealDomain(; lower = 0, init = 16.4)
        """
        Peripheral Volume (L)
        """
        tvvp  RealDomain(; lower = 0, init = 10)
        """
        Distributional Clearance (L/hr)
        """
        tvq  RealDomain(; lower = 0, init = 2)
        """
        Absorption rate constant (h-1)
        """
        tvka  RealDomain(; lower = 0, init = 1.3)
        """
          - ΩCL
          - ΩVc
          - ΩKa
          - ΩVp
          - ΩQ
        """
        Ω  PDiagDomain(init = [0.04, 0.04, 0.04, 0.04, 0.04])
        """
        Proportional RUV
        """
        σ_p  RealDomain(; lower = 0.0001, init = 0.2)
    end

    @random begin
        η ~ MvNormal(Ω)
    end

    @covariates begin
        """
        Dose (mg)
        """
        Dose
    end

    @pre begin
        CL = tvcl * exp(η[1])
        Vc = tvv * exp(η[2])
        Ka = tvka * exp(η[3])
        Vp = tvvp * exp(η[4])
        Q = tvq * exp(η[5])
    end

    @dynamics Depots1Central1Periph1

    @derived begin
        cp := @. Central / Vc
        """
        CTMx Concentration (ng/mL)
        """
        Conc ~ @. Normal(cp, cp * σ_p)
    end
end
┌ Warning: Covariate Dose is not used in the model.
└ @ Pumas ~/run/_work/PumasTutorials.jl/PumasTutorials.jl/custom_julia_depot/packages/Pumas/aZRyj/src/dsl/model_macro.jl:2856
PumasModel
  Parameters: tvcl, tvv, tvvp, tvq, tvka, Ω, σ_p
  Random effects: η
  Covariates: Dose
  Dynamical system variables: Depot, Central, Peripheral
  Dynamical system type: Closed form
  Derived: Conc
  Observed: Conc
3.2.3.1 FOCE
pkfit_2cmp =
    fit(pk_2cmp, pkpain_noplb, init_params(pk_2cmp), FOCE(); constantcoef = (; tvka = 2))
[ Info: Checking the initial parameter values.
[ Info: The initial negative log likelihood and its gradient are finite. Check passed.
Iter     Function value   Gradient norm 
     0    -6.302369e+02     1.021050e+03
 * time: 7.700920104980469e-5
     1    -9.197817e+02     9.927951e+02
 * time: 0.30173587799072266
     2    -1.372640e+03     2.054986e+02
 * time: 0.6254029273986816
     3    -1.446326e+03     1.543987e+02
 * time: 0.9318819046020508
     4    -1.545570e+03     1.855028e+02
 * time: 1.251338005065918
     5    -1.581449e+03     1.713157e+02
 * time: 1.7304089069366455
     6    -1.639433e+03     1.257382e+02
 * time: 2.0164828300476074
     7    -1.695964e+03     7.450539e+01
 * time: 2.319591999053955
     8    -1.722243e+03     5.961044e+01
 * time: 2.657282829284668
     9    -1.736883e+03     7.320921e+01
 * time: 2.933048963546753
    10    -1.753547e+03     7.501938e+01
 * time: 3.249656915664673
    11    -1.764053e+03     6.185661e+01
 * time: 3.5680859088897705
    12    -1.778991e+03     4.831033e+01
 * time: 3.9332008361816406
    13    -1.791492e+03     4.943278e+01
 * time: 4.31971001625061
    14    -1.799847e+03     2.871410e+01
 * time: 4.701333999633789
    15    -1.805374e+03     7.520791e+01
 * time: 5.085456848144531
    16    -1.816260e+03     2.990621e+01
 * time: 5.483062028884888
    17    -1.818252e+03     2.401915e+01
 * time: 5.775821924209595
    18    -1.822988e+03     2.587225e+01
 * time: 6.109920978546143
    19    -1.824653e+03     1.550517e+01
 * time: 6.40765905380249
    20    -1.826074e+03     1.788927e+01
 * time: 6.738783836364746
    21    -1.826821e+03     1.888389e+01
 * time: 7.086375951766968
    22    -1.827900e+03     1.432840e+01
 * time: 7.381964921951294
    23    -1.828511e+03     9.422041e+00
 * time: 7.712573051452637
    24    -1.828754e+03     5.363442e+00
 * time: 8.071256875991821
    25    -1.828862e+03     4.916159e+00
 * time: 8.347540855407715
    26    -1.829007e+03     4.695755e+00
 * time: 8.67992091178894
    27    -1.829358e+03     1.090249e+01
 * time: 8.991798877716064
    28    -1.829830e+03     1.451325e+01
 * time: 9.341611862182617
    29    -1.830201e+03     1.108715e+01
 * time: 9.717772960662842
    30    -1.830360e+03     2.891223e+00
 * time: 10.034783840179443
    31    -1.830390e+03     1.695557e+00
 * time: 10.410444021224976
    32    -1.830404e+03     1.601712e+00
 * time: 10.806506872177124
    33    -1.830432e+03     2.823385e+00
 * time: 11.308536052703857
    34    -1.830477e+03     4.060617e+00
 * time: 11.72184705734253
    35    -1.830528e+03     5.133499e+00
 * time: 12.04262399673462
    36    -1.830593e+03     2.830970e+00
 * time: 12.412673950195312
    37    -1.830616e+03     3.342835e+00
 * time: 12.738509893417358
    38    -1.830622e+03     3.708884e+00
 * time: 13.068030834197998
    39    -1.830625e+03     2.062934e+00
 * time: 13.440907001495361
    40    -1.830627e+03     1.278569e+00
 * time: 13.71698784828186
    41    -1.830628e+03     1.832895e+00
 * time: 14.023622035980225
    42    -1.830628e+03     3.768840e-01
 * time: 14.270959854125977
    43    -1.830629e+03     3.152895e-01
 * time: 14.533400058746338
    44    -1.830630e+03     4.871060e-01
 * time: 14.800099849700928
    45    -1.830630e+03     3.110627e-01
 * time: 15.075872898101807
    46    -1.830630e+03     2.687758e-02
 * time: 15.327050924301147
    47    -1.830630e+03     4.694018e-03
 * time: 15.556539058685303
    48    -1.830630e+03     8.272969e-03
 * time: 15.758961915969849
    49    -1.830630e+03     8.249151e-03
 * time: 16.019502878189087
    50    -1.830630e+03     8.245562e-03
 * time: 16.368154048919678
    51    -1.830630e+03     8.240030e-03
 * time: 16.672675848007202
    52    -1.830630e+03     8.240030e-03
 * time: 17.047104835510254
    53    -1.830630e+03     8.240030e-03
 * time: 17.422839879989624
FittedPumasModel

Successful minimization:                      true

Likelihood approximation:                     FOCE
Likelihood Optimizer:                         BFGS
Dynamical system type:                 Closed form

Log-likelihood value:                    1830.6304
Number of subjects:                            120
Number of parameters:         Fixed      Optimized
                                  1             10
Observation records:         Active        Missing
    Conc:                      1320              0
    Total:                     1320              0

-------------------
         Estimate
-------------------
tvcl      2.8138
tvv      11.005
tvvp      5.54
tvq       1.5159
tvka      2.0
Ω₁,₁      0.10267
Ω₂,₂      0.060776
Ω₃,₃      1.2012
Ω₄,₄      0.4235
Ω₅,₅      0.24473
σ_p       0.048405
-------------------

3.3 Comparing One- versus Two-compartment models

The 2-compartment model has a much lower objective function compared to the 1-compartment. Let’s compare the estimates from the 2 models using the compare_estimates function.

compare_estimates(; pkfit_1cmp, pkfit_2cmp)
11×3 DataFrame
Row parameter pkfit_1cmp pkfit_2cmp
String Float64? Float64?
1 tvcl 3.1642 2.81378
2 tvv 13.288 11.0046
3 tvka 2.0 2.0
4 Ω₁,₁ 0.0849405 0.102669
5 Ω₂,₂ 0.0485682 0.0607757
6 Ω₃,₃ 5.58107 1.20115
7 σ_p 0.100928 0.0484049
8 tvvp missing 5.53998
9 tvq missing 1.51591
10 Ω₄,₄ missing 0.423495
11 Ω₅,₅ missing 0.244731

We perform a likelihood ratio test to compare the two nested models. The test statistic and the \(p\)-value clearly indicate that a 2-compartment model should be preferred.

lrtest(pkfit_1cmp, pkfit_2cmp)
Statistic:          1200.0
Degrees of freedom:      4
P-value:               0.0

We should also compare the other metrics and statistics, such ηshrinkage, ϵshrinkage, aic, and bic using the metrics_table function.

@chain metrics_table(pkfit_2cmp) begin
    leftjoin(metrics_table(pkfit_1cmp); on = :Metric, makeunique = true)
    rename!(:Value => :pk2cmp, :Value_1 => :pk1cmp)
end
20×3 DataFrame
Row Metric pk2cmp pk1cmp
String Any Any
1 Successful true true
2 Estimation Time 17.423 3.74
3 Subjects 120 120
4 Fixed Parameters 1 1
5 Optimized Parameters 10 6
6 Conc Active Observations 1320 1320
7 Conc Missing Observations 0 0
8 Total Active Observations 1320 1320
9 Total Missing Observations 0 0
10 Likelihood Approximation Pumas.FOCE{Optim.NewtonTrustRegion{Float64}, Optim.Options{Float64, Nothing}} Pumas.FOCE{Optim.NewtonTrustRegion{Float64}, Optim.Options{Float64, Nothing}}
11 LogLikelihood (LL) 1830.63 1231.19
12 -2LL -3661.26 -2462.38
13 AIC -3641.26 -2450.38
14 BIC -3589.41 -2419.26
15 (η-shrinkage) η₁ 0.037 0.016
16 (η-shrinkage) η₂ 0.047 0.04
17 (η-shrinkage) η₃ 0.516 0.733
18 (ϵ-shrinkage) Conc 0.185 0.105
19 (η-shrinkage) η₄ 0.287 missing
20 (η-shrinkage) η₅ 0.154 missing

We next generate some goodness of fit plots to compare which model is performing better. To do this, we first inspect the diagnostics of our model fit.

res_inspect_1cmp = inspect(pkfit_1cmp)
[ Info: Calculating predictions.
[ Info: Calculating weighted residuals.
[ Info: Calculating empirical bayes.
[ Info: Evaluating individual parameters.
[ Info: Evaluating dose control parameters.
[ Info: Done.
FittedPumasModelInspection

Fitting was successful: true
Likehood approximation used for weighted residuals : Pumas.FOCE{Optim.NewtonTrustRegion{Float64}, Optim.Options{Float64, Nothing}}(Optim.NewtonTrustRegion{Float64}(1.0, 100.0, 1.4901161193847656e-8, 0.1, 0.25, 0.75, false), Optim.Options(x_abstol = 0.0, x_reltol = 0.0, f_abstol = 0.0, f_reltol = 0.0, g_abstol = 1.0e-5, g_reltol = 1.0e-8, outer_x_abstol = 0.0, outer_x_reltol = 0.0, outer_f_abstol = 0.0, outer_f_reltol = 0.0, outer_g_abstol = 1.0e-8, outer_g_reltol = 1.0e-8, f_calls_limit = 0, g_calls_limit = 0, h_calls_limit = 0, allow_f_increases = false, allow_outer_f_increases = true, successive_f_tol = 1, iterations = 1000, outer_iterations = 1000, store_trace = false, trace_simplex = false, show_trace = false, extended_trace = false, show_warnings = true, show_every = 1, time_limit = NaN, )
)
res_inspect_2cmp = inspect(pkfit_2cmp)
[ Info: Calculating predictions.
[ Info: Calculating weighted residuals.
[ Info: Calculating empirical bayes.
[ Info: Evaluating individual parameters.
[ Info: Evaluating dose control parameters.
[ Info: Done.
FittedPumasModelInspection

Fitting was successful: true
Likehood approximation used for weighted residuals : Pumas.FOCE{Optim.NewtonTrustRegion{Float64}, Optim.Options{Float64, Nothing}}(Optim.NewtonTrustRegion{Float64}(1.0, 100.0, 1.4901161193847656e-8, 0.1, 0.25, 0.75, false), Optim.Options(x_abstol = 0.0, x_reltol = 0.0, f_abstol = 0.0, f_reltol = 0.0, g_abstol = 1.0e-5, g_reltol = 1.0e-8, outer_x_abstol = 0.0, outer_x_reltol = 0.0, outer_f_abstol = 0.0, outer_f_reltol = 0.0, outer_g_abstol = 1.0e-8, outer_g_reltol = 1.0e-8, f_calls_limit = 0, g_calls_limit = 0, h_calls_limit = 0, allow_f_increases = false, allow_outer_f_increases = true, successive_f_tol = 1, iterations = 1000, outer_iterations = 1000, store_trace = false, trace_simplex = false, show_trace = false, extended_trace = false, show_warnings = true, show_every = 1, time_limit = NaN, )
)
gof_1cmp = goodness_of_fit(res_inspect_1cmp; figure = (; fontsize = 12))

A 4-mosaic goodness of fit plot showing the 1-compartment model

Goodness of Fit Plots
gof_2cmp = goodness_of_fit(res_inspect_2cmp; figure = (; fontsize = 12))

Trend plot with observations for all individual subjects over time

Subject Fits

These plots clearly indicate that the 2-compartment model is a better fit compared to the 1-compartment model.

We can look at selected sample of individual plots.

fig_subject_fits = subject_fits(
    res_inspect_2cmp;
    separate = true,
    paginate = true,
    facet = (; combinelabels = true),
    figure = (; fontsize = 18),
    axis = (; xlabel = "Time (hr)", ylabel = "CTMx Concentration (ng/mL)"),
)
fig_subject_fits[1]

Trend plot with observations for 4 individual subjects over time

Subject Fits for 4 Individuals

There a lot of important plotting functions you can use for your standard model diagnostics. Please make sure to read the documentation for plotting. Below, we are checking the distribution of the empirical Bayes estimates.

empirical_bayes_dist(res_inspect_2cmp; zeroline_color = :red)

A histogram for the empirical Bayes distribution of all subject-specific parameters

Empirical Bayes Distribution
empirical_bayes_vs_covariates(
    res_inspect_2cmp;
    categorical = [:Dose],
    figure = (; size = (600, 800)),
)

A histogram for the empirical Bayes distribution of all subject-specific parameters stratified by categorical covariates

Empirical Bayes Distribution Stratified by Covariates

Clearly, our guess at tvka seems off-target. Let’s try and estimate tvka instead of fixing it to 2:

pkfit_2cmp_unfix_ka = fit(pk_2cmp, pkpain_noplb, init_params(pk_2cmp), FOCE())
[ Info: Checking the initial parameter values.
[ Info: The initial negative log likelihood and its gradient are finite. Check passed.
Iter     Function value   Gradient norm 
     0    -3.200734e+02     1.272671e+03
 * time: 7.796287536621094e-5
     1    -8.682982e+02     1.000199e+03
 * time: 0.36192989349365234
     2    -1.381870e+03     5.008081e+02
 * time: 0.7124800682067871
     3    -1.551053e+03     6.833490e+02
 * time: 1.1106960773468018
     4    -1.680887e+03     1.834586e+02
 * time: 1.4103178977966309
     5    -1.726118e+03     8.870274e+01
 * time: 1.764415979385376
     6    -1.761023e+03     1.162036e+02
 * time: 2.0781610012054443
     7    -1.786619e+03     1.114552e+02
 * time: 2.434468984603882
     8    -1.863556e+03     9.914305e+01
 * time: 2.77034592628479
     9    -1.882942e+03     5.342676e+01
 * time: 3.134916067123413
    10    -1.888020e+03     2.010181e+01
 * time: 3.4656410217285156
    11    -1.889832e+03     1.867263e+01
 * time: 3.836688995361328
    12    -1.891649e+03     1.668512e+01
 * time: 4.203073024749756
    13    -1.892615e+03     1.820701e+01
 * time: 4.510792016983032
    14    -1.893453e+03     1.745195e+01
 * time: 4.867301940917969
    15    -1.894760e+03     1.850174e+01
 * time: 5.179548978805542
    16    -1.895647e+03     1.773939e+01
 * time: 5.524960041046143
    17    -1.896597e+03     1.143462e+01
 * time: 5.84778904914856
    18    -1.897114e+03     9.720097e+00
 * time: 6.198713064193726
    19    -1.897373e+03     6.054321e+00
 * time: 6.517086982727051
    20    -1.897498e+03     3.985954e+00
 * time: 6.8590168952941895
    21    -1.897571e+03     4.262464e+00
 * time: 7.215123891830444
    22    -1.897633e+03     4.010234e+00
 * time: 7.509742021560669
    23    -1.897714e+03     4.805375e+00
 * time: 7.863183975219727
    24    -1.897802e+03     3.508706e+00
 * time: 8.164668083190918
    25    -1.897865e+03     3.691477e+00
 * time: 8.510861873626709
    26    -1.897900e+03     2.982720e+00
 * time: 8.806504011154175
    27    -1.897928e+03     2.563790e+00
 * time: 9.13526201248169
    28    -1.897968e+03     3.261485e+00
 * time: 9.438282012939453
    29    -1.898013e+03     3.064690e+00
 * time: 9.77065896987915
    30    -1.898040e+03     1.636525e+00
 * time: 10.076997995376587
    31    -1.898051e+03     1.439997e+00
 * time: 10.409209966659546
    32    -1.898057e+03     1.436504e+00
 * time: 10.710906028747559
    33    -1.898069e+03     1.881529e+00
 * time: 11.043354034423828
    34    -1.898095e+03     3.253165e+00
 * time: 11.396759033203125
    35    -1.898142e+03     4.257942e+00
 * time: 11.693532943725586
    36    -1.898199e+03     3.685241e+00
 * time: 12.053384065628052
    37    -1.898245e+03     2.567364e+00
 * time: 12.37402892112732
    38    -1.898246e+03     2.561591e+00
 * time: 12.92623496055603
    39    -1.898251e+03     2.530888e+00
 * time: 13.408470869064331
    40    -1.898298e+03     2.673696e+00
 * time: 13.712632894515991
    41    -1.898300e+03     2.794639e+00
 * time: 14.137242078781128
    42    -1.898337e+03     3.751590e+00
 * time: 14.577944040298462
    43    -1.898421e+03     4.878407e+00
 * time: 14.942821025848389
    44    -1.898433e+03     4.391719e+00
 * time: 15.393600940704346
    45    -1.898437e+03     4.216518e+00
 * time: 15.871919870376587
    46    -1.898442e+03     4.108397e+00
 * time: 16.4161958694458
    47    -1.898446e+03     3.934902e+00
 * time: 16.939286947250366
    48    -1.898449e+03     3.769838e+00
 * time: 17.46850609779358
    49    -1.898450e+03     3.739486e+00
 * time: 17.91516089439392
    50    -1.898450e+03     3.712049e+00
 * time: 18.455398082733154
    51    -1.898457e+03     3.623436e+00
 * time: 18.93416690826416
    52    -1.898471e+03     2.668312e+00
 * time: 19.26013994216919
    53    -1.898479e+03     2.302438e+00
 * time: 19.616926908493042
    54    -1.898480e+03     2.386566e-01
 * time: 19.953322887420654
    55    -1.898480e+03     7.802040e-01
 * time: 20.30431294441223
    56    -1.898480e+03     7.369786e-01
 * time: 20.823550939559937
    57    -1.898480e+03     5.113191e-01
 * time: 21.213505029678345
    58    -1.898480e+03     3.067709e-01
 * time: 21.53412699699402
    59    -1.898480e+03     3.076791e-01
 * time: 21.819719076156616
    60    -1.898480e+03     3.102066e-01
 * time: 22.13746190071106
    61    -1.898480e+03     3.102066e-01
 * time: 22.524199962615967
    62    -1.898480e+03     3.102069e-01
 * time: 22.997545957565308
    63    -1.898480e+03     3.102071e-01
 * time: 23.736550092697144
    64    -1.898480e+03     3.102074e-01
 * time: 24.44553303718567
    65    -1.898480e+03     3.102076e-01
 * time: 25.174213886260986
    66    -1.898480e+03     3.102079e-01
 * time: 25.88929009437561
    67    -1.898480e+03     3.102081e-01
 * time: 26.58518695831299
    68    -1.898480e+03     3.102081e-01
 * time: 27.301661014556885
    69    -1.898480e+03     3.102081e-01
 * time: 28.0117609500885
    70    -1.898480e+03     3.102082e-01
 * time: 28.73285698890686
    71    -1.898480e+03     3.102082e-01
 * time: 29.470452070236206
    72    -1.898480e+03     3.102082e-01
 * time: 30.202401876449585
    73    -1.898480e+03     3.102102e-01
 * time: 30.903527975082397
    74    -1.898480e+03     3.102102e-01
 * time: 31.427478075027466
    75    -1.898480e+03     3.102096e-01
 * time: 31.978260040283203
    76    -1.898480e+03     3.102096e-01
 * time: 32.512479066848755
    77    -1.898480e+03     3.125688e-01
 * time: 33.00318193435669
    78    -1.898480e+03     3.125640e-01
 * time: 33.45245289802551
    79    -1.898480e+03     3.125618e-01
 * time: 33.92856287956238
    80    -1.898480e+03     3.125615e-01
 * time: 34.46659588813782
    81    -1.898480e+03     3.125612e-01
 * time: 35.013099908828735
    82    -1.898480e+03     3.125610e-01
 * time: 35.50523591041565
    83    -1.898480e+03     3.125609e-01
 * time: 36.11022090911865
    84    -1.898480e+03     3.125604e-01
 * time: 36.63760805130005
    85    -1.898480e+03     3.125602e-01
 * time: 37.15481090545654
    86    -1.898480e+03     3.125602e-01
 * time: 37.664392948150635
    87    -1.898480e+03     3.125602e-01
 * time: 38.403444051742554
    88    -1.898480e+03     3.125602e-01
 * time: 39.20531988143921
    89    -1.898480e+03     3.125602e-01
 * time: 39.98598098754883
    90    -1.898480e+03     3.125602e-01
 * time: 40.75041389465332
    91    -1.898480e+03     3.125602e-01
 * time: 41.57505202293396
    92    -1.898480e+03     3.125602e-01
 * time: 42.0564661026001
    93    -1.898480e+03     3.125602e-01
 * time: 42.61239194869995
    94    -1.898480e+03     3.125602e-01
 * time: 43.13966488838196
    95    -1.898480e+03     1.387453e-01
 * time: 43.48903489112854
    96    -1.898480e+03     1.387453e-01
 * time: 43.91609001159668
    97    -1.898480e+03     1.387453e-01
 * time: 44.453840017318726
    98    -1.898480e+03     1.387453e-01
 * time: 45.04751992225647
    99    -1.898480e+03     1.387453e-01
 * time: 45.414485931396484
FittedPumasModel

Successful minimization:                      true

Likelihood approximation:                     FOCE
Likelihood Optimizer:                         BFGS
Dynamical system type:                 Closed form

Log-likelihood value:                    1898.4797
Number of subjects:                            120
Number of parameters:         Fixed      Optimized
                                  0             11
Observation records:         Active        Missing
    Conc:                      1320              0
    Total:                     1320              0

-------------------
         Estimate
-------------------
tvcl      2.6191
tvv      11.378
tvvp      8.453
tvq       1.3164
tvka      4.8926
Ω₁,₁      0.13243
Ω₂,₂      0.059669
Ω₃,₃      0.41581
Ω₄,₄      0.080679
Ω₅,₅      0.24996
σ_p       0.049097
-------------------
compare_estimates(; pkfit_2cmp, pkfit_2cmp_unfix_ka)
11×3 DataFrame
Row parameter pkfit_2cmp pkfit_2cmp_unfix_ka
String Float64? Float64?
1 tvcl 2.81378 2.6191
2 tvv 11.0046 11.3784
3 tvvp 5.53998 8.45297
4 tvq 1.51591 1.31637
5 tvka 2.0 4.89257
6 Ω₁,₁ 0.102669 0.132432
7 Ω₂,₂ 0.0607757 0.0596693
8 Ω₃,₃ 1.20115 0.415811
9 Ω₄,₄ 0.423495 0.0806789
10 Ω₅,₅ 0.244731 0.249956
11 σ_p 0.0484049 0.0490975

Let’s revaluate the goodness of fits and η distribution plots.

Not much change in the general gof plots

res_inspect_2cmp_unfix_ka = inspect(pkfit_2cmp_unfix_ka)
[ Info: Calculating predictions.
[ Info: Calculating weighted residuals.
[ Info: Calculating empirical bayes.
[ Info: Evaluating individual parameters.
[ Info: Evaluating dose control parameters.
[ Info: Done.
FittedPumasModelInspection

Fitting was successful: true
Likehood approximation used for weighted residuals : Pumas.FOCE{Optim.NewtonTrustRegion{Float64}, Optim.Options{Float64, Nothing}}(Optim.NewtonTrustRegion{Float64}(1.0, 100.0, 1.4901161193847656e-8, 0.1, 0.25, 0.75, false), Optim.Options(x_abstol = 0.0, x_reltol = 0.0, f_abstol = 0.0, f_reltol = 0.0, g_abstol = 1.0e-5, g_reltol = 1.0e-8, outer_x_abstol = 0.0, outer_x_reltol = 0.0, outer_f_abstol = 0.0, outer_f_reltol = 0.0, outer_g_abstol = 1.0e-8, outer_g_reltol = 1.0e-8, f_calls_limit = 0, g_calls_limit = 0, h_calls_limit = 0, allow_f_increases = false, allow_outer_f_increases = true, successive_f_tol = 1, iterations = 1000, outer_iterations = 1000, store_trace = false, trace_simplex = false, show_trace = false, extended_trace = false, show_warnings = true, show_every = 1, time_limit = NaN, )
)
goodness_of_fit(res_inspect_2cmp_unfix_ka; figure = (; fontsize = 12))

A 4-mosaic goodness of fit plot showing the 2-compartment model

Goodness of Fit Plots

But you can see a huge improvement in the ηka, (η₃) distribution which is now centered around zero

empirical_bayes_vs_covariates(
    res_inspect_2cmp_unfix_ka;
    categorical = [:Dose],
    ebes = [:η₃],
    figure = (; size = (600, 800)),
)

A histogram for the empirical Bayes distribution of all subject-specific parameters stratified by categorical covariates

Empirical Bayes Distribution Stratified by Covariates

Finally looking at some individual plots for the same subjects as earlier:

fig_subject_fits2 = subject_fits(
    res_inspect_2cmp_unfix_ka;
    separate = true,
    paginate = true,
    facet = (; combinelabels = true, linkyaxes = false),
    figure = (; fontsize = 18),
    axis = (; xlabel = "Time (hr)", ylabel = "CTMx Concentration (ng/mL)"),
)
fig_subject_fits2[6]

Trend plot with observations for 4 individual subjects over time

Subject Fits for 4 Individuals

The randomly sampled individual fits don’t seem good in some individuals, but we can evaluate this via a vpc to see how to go about.

3.4 Visual Predictive Checks (VPC)

We can now perform a vpc to check. The default plots provide a 80% prediction interval and a 95% simulated CI (shaded area) around each of the quantiles

pk_vpc = vpc(
    pkfit_2cmp_unfix_ka,
    200;
    observations = [:Conc],
    stratify_by = [:Dose],
    ensemblealg = EnsembleThreads(), # multi-threading
)
[ Info: Continuous VPC
Visual Predictive Check
  Type of VPC: Continuous VPC
  Simulated populations: 200
  Subjects in data: 120
  Stratification variable(s): [:Dose]
  Confidence level: 0.95
  VPC lines: quantiles ([0.1, 0.5, 0.9])
vpc_plot(
    pk_2cmp,
    pk_vpc;
    rows = 1,
    columns = 3,
    figure = (; size = (1400, 1000), fontsize = 22),
    axis = (;
        xlabel = "Time (hr)",
        ylabel = "Observed/Predicted\n CTMx Concentration (ng/mL)",
    ),
    facet = (; combinelabels = true),
)

A visual predictive plot stratified by dose group

Visual Predictive Plots

The visual predictive check suggests that the model captures the data well across all dose levels.

4 Additional Help

If you have questions regarding this tutorial, please post them on our discourse site.