A Comprehensive Introduction to Pumas

Authors

Vijay Ivaturi

Jose Storopoli

This tutorial provides a comprehensive introduction to a modeling and simulation workflow in Pumas. The idea is not to get into the details of Pumas specifics, but instead provide a narrative on the lines of a regular workflow in our day-to-day work, with brevity where required to allow a broad overview. Wherever possible, cross-references will be provided to documentation and detailed examples that provide deeper insight into a particular topic.

As part of this workflow, you will be introduced to various aspects such as:

  1. Data wrangling in Julia
  2. Exploratory analysis in Julia
  3. Continuous data non-linear mixed effects modeling in Pumas
  4. Model comparison routines, post-processing, validation etc.

1 The Study and Design

CTMNopain is a novel anti-inflammatory agent under preliminary investigation. A dose-ranging trial was conducted comparing placebo with 3 doses of CTMNopain (5mg, 20mg and 80 mg QD). The maximum tolerated dose is 160 mg per day. Plasma concentrations (mg/L) of the drug were measured at 0, 0.5, 1, 1.5, 2, 2.5, 3-8 hours.

Pain score (0=no pain, 1=mild, 2=moderate, 3=severe) were obtained at time points when plasma concentration was collected. A pain score of 2 or more is considered as no pain relief.

The subjects can request for remedication if pain relief is not achieved after 2 hours post dose. Some subjects had remedication before 2 hours if they were not able to bear the pain. The time to remedication and the remedication status is available for subjects.

The pharmacokinetic dataset can be accessed using PharmaDatasets.jl.

2 Setup

2.1 Load libraries

These libraries provide the workhorse functionality in the Pumas ecosystem:

using Pumas
using PumasUtilities
using NCA
using NCAUtilities

In addition, libraries below are good add-on’s that provide ancillary functionality:

using GLM: lm, @formula
using Random
using CSV
using DataFramesMeta
using CairoMakie
using PharmaDatasets

2.2 Data Wrangling

We start by reading in the dataset and making some quick summaries.

Tip

If you want to learn more about data wrangling, don’t forget to check our Data Wrangling in Julia tutorials!

pkpain_df = dataset("pk_painrelief")
first(pkpain_df, 5)
5×7 DataFrame
Row Subject Time Conc PainRelief PainScore RemedStatus Dose
Int64 Float64 Float64 Int64 Int64 Int64 String7
1 1 0.0 0.0 0 3 1 20 mg
2 1 0.5 1.15578 1 1 0 20 mg
3 1 1.0 1.37211 1 0 0 20 mg
4 1 1.5 1.30058 1 0 0 20 mg
5 1 2.0 1.19195 1 1 0 20 mg

Let’s filter out the placebo data as we don’t need that for the PK analysis.

pkpain_noplb_df = @rsubset pkpain_df :Dose != "Placebo";
first(pkpain_noplb_df, 5)
5×7 DataFrame
Row Subject Time Conc PainRelief PainScore RemedStatus Dose
Int64 Float64 Float64 Int64 Int64 Int64 String7
1 1 0.0 0.0 0 3 1 20 mg
2 1 0.5 1.15578 1 1 0 20 mg
3 1 1.0 1.37211 1 0 0 20 mg
4 1 1.5 1.30058 1 0 0 20 mg
5 1 2.0 1.19195 1 1 0 20 mg

3 Analysis

3.1 Non-compartmental analysis

Let’s begin by performing a quick NCA of the concentration time profiles and view the exposure changes across doses. The input data specification for NCA analysis requires the presence of a :route column and an :amt column that specifies the dose. So, let’s add that in:

@rtransform! pkpain_noplb_df begin
    :route = "ev"
    :Dose = parse(Int, chop(:Dose; tail = 3))
end

We also need to create an :amt column:

@rtransform! pkpain_noplb_df :amt = :Time == 0 ? :Dose : missing

Now, we map the data variables to the read_nca function that prepares the data for NCA analysis.

pkpain_nca = read_nca(
    pkpain_noplb_df;
    id = :Subject,
    time = :Time,
    amt = :amt,
    observations = :Conc,
    group = [:Dose],
    route = :route,
)
NCAPopulation (120 subjects):
  Group: [["Dose" => 5], ["Dose" => 20], ["Dose" => 80]]
  Number of missing observations: 0
  Number of blq observations: 0

Now that we mapped the data in, let’s visualize the concentration vs time plots for a few individuals. When paginate is set to true, a vector of plots are returned and below we display the first element with 9 individuals.

f = observations_vs_time(
    pkpain_nca;
    paginate = true,
    axis = (; xlabel = "Time (hr)", ylabel = "CTMNoPain Concentration (ng/mL)"),
    facet = (; combinelabels = true),
)
f[1]

An observations versus time profile for all subjects

Observations versus Time

or you can view the summary curves by dose group as passed in to the group argument in read_nca

summary_observations_vs_time(
    pkpain_nca,
    figure = (; fontsize = 22, size = (800, 1000)),
    color = "black",
    linewidth = 3,
    axis = (; xlabel = "Time (hr)", ylabel = "CTMX Concentration (μg/mL)"),
    facet = (; combinelabels = true, linkaxes = true),
)

An observations versus time profile for all subjects in a summarized manner

Summary Observations versus Time

A full NCA Report is now obtained for completeness purposes using the run_nca function, but later we will only extract a couple of key metrics of interest.

pk_nca = run_nca(pkpain_nca; sigdigits = 3)

We can look at the NCA fits for some subjects. Here f is a vector or figures. We’ll showcase the first image by indexing f:

f = subject_fits(
    pk_nca,
    paginate = true,
    axis = (; xlabel = "Time (hr)", ylabel = "CTMX Concentration (μg/mL)"),
    facet = (; combinelabels = true, linkaxes = true),
)
f[1]

Trend plot with observations for all individual subjects over time

Subject Fits

As CTMNopain’s effect maybe mainly related to maximum concentration (cmax) or area under the curve (auc), we present some summary statistics using the summarize function from NCA.

strata = [:Dose]
1-element Vector{Symbol}:
 :Dose
params = [:cmax, :aucinf_obs]
2-element Vector{Symbol}:
 :cmax
 :aucinf_obs
output = summarize(pk_nca; stratify_by = strata, parameters = params)
6×10 DataFrame
Row Dose parameters numsamples minimum maximum mean std geomean geostd geomeanCV
Int64 String Int64 Float64 Float64 Float64 Float64 Float64 Float64 Float64
1 5 cmax 40 0.19 0.539 0.356075 0.0884129 0.345104 1.2932 26.1425
2 5 aucinf_obs 40 0.914 3.4 1.5979 0.490197 1.53373 1.32974 29.0868
3 20 cmax 40 0.933 2.7 1.4737 0.361871 1.43408 1.2633 23.6954
4 20 aucinf_obs 40 2.77 14.1 6.377 2.22239 6.02031 1.41363 35.6797
5 80 cmax 40 3.3 8.47 5.787 1.31957 5.64164 1.25757 23.2228
6 80 aucinf_obs 40 13.7 49.1 29.5 8.68984 28.2954 1.34152 30.0258

The statistics printed above are the default, but you can pass in your own statistics using the stats = [] argument to the summarize function.

We can look at a few parameter distribution plots.

parameters_vs_group(
    pk_nca,
    parameter = :cmax,
    axis = (; xlabel = "Dose (mg)", ylabel = "Cₘₐₓ (ng/mL)"),
    figure = (; fontsize = 18),
)

A violin plot for the Cmax distribution for each dose group

Cmax for each Dose Group

Dose normalized PK parameters, cmax and aucinf were essentially dose proportional between for 5 mg, 20 mg and 80 mg doses. You can perform a simple regression to check the impact of dose on cmax:

dp = NCA.DoseLinearityPowerModel(pk_nca, :cmax; level = 0.9)
Dose Linearity Power Model
Variable: cmax
Model: log(cmax) ~ log(α) + β × log(dose)
────────────────────────────────────
   Estimate  low CI 90%  high CI 90%
────────────────────────────────────
β   1.00775     0.97571       1.0398
────────────────────────────────────

Here’s a visualization for the dose linearity using a power model for cmax:

power_model(dp)

A dose linearity power model plot for Cmax

Dose Linearity Plot

We can also visualize a dose proportionality results with respect to a specific endpoint in a NCA Report; for example cmax and aucinf_obs:

dose_vs_dose_normalized(pk_nca, :cmax)

A dose proportionality plot for Cmax

Dose Proportionality Plot
dose_vs_dose_normalized(pk_nca, :aucinf_obs)

A dose proportionality plot for AUC

Dose Proportionality Plot

Based on visual inspection of the concentration time profiles as seen earlier, CTMNopain exhibited monophasic decline, and perhaps a one compartment model best fits the PK data.

3.2 Pharmacokinetic modeling

As seen from the plots above, the concentrations decline monoexponentially. We will evaluate both one and two compartment structural models to assess best fit. Further, different residual error models will also be tested.

We will use the results from NCA to provide us good initial estimates.

3.2.1 Data preparation for modeling

PumasNDF requires the presence of :evid and :cmt columns in the dataset.

@rtransform! pkpain_noplb_df begin
    :evid = :Time == 0 ? 1 : 0
    :cmt = :Time == 0 ? 1 : 2
    :cmt2 = 1 # for zero order absorption
end

Further, observations at time of dosing, i.e., when evid = 1 have to be missing

@rtransform! pkpain_noplb_df :Conc = :evid == 1 ? missing : :Conc

The dataframe will now be converted to a Population using read_pumas. Note that both observations and covariates are required to be an array even if it is one element.

pkpain_noplb = read_pumas(
    pkpain_noplb_df;
    id = :Subject,
    time = :Time,
    amt = :amt,
    observations = [:Conc],
    covariates = [:Dose],
    evid = :evid,
    cmt = :cmt,
)
Population
  Subjects: 120
  Covariates: Dose
  Observations: Conc

Now that the data is transformed to a Population of subjects, we can explore different models.

3.2.2 One-compartment model

Note

If you are not familiar yet with the @model blocks and syntax, please check our documentation.

pk_1cmp = @model begin

    @metadata begin
        desc = "One Compartment Model"
        timeu = u"hr"
    end

    @param begin
        """
        Clearance (L/hr)
        """
        tvcl  RealDomain(; lower = 0, init = 3.2)
        """
        Volume (L)
        """
        tvv  RealDomain(; lower = 0, init = 16.4)
        """
        Absorption rate constant (h-1)
        """
        tvka  RealDomain(; lower = 0, init = 3.8)
        """
          - ΩCL
          - ΩVc
          - ΩKa
        """
        Ω  PDiagDomain(init = [0.04, 0.04, 0.04])
        """
        Proportional RUV
        """
        σ_p  RealDomain(; lower = 0.0001, init = 0.2)
    end

    @random begin
        η ~ MvNormal(Ω)
    end

    @covariates begin
        """
        Dose (mg)
        """
        Dose
    end

    @pre begin
        CL = tvcl * exp(η[1])
        Vc = tvv * exp(η[2])
        Ka = tvka * exp(η[3])
    end

    @dynamics Depots1Central1

    @derived begin
        cp := @. Central / Vc
        """
        CTMx Concentration (ng/mL)
        """
        Conc ~ @. Normal(cp, abs(cp) * σ_p)
    end

end
┌ Warning: Covariate Dose is not used in the model.
└ @ Pumas ~/_work/PumasTutorials.jl/PumasTutorials.jl/custom_julia_depot/packages/Pumas/aZRyj/src/dsl/model_macro.jl:2856
PumasModel
  Parameters: tvcl, tvv, tvka, Ω, σ_p
  Random effects: η
  Covariates: Dose
  Dynamical system variables: Depot, Central
  Dynamical system type: Closed form
  Derived: Conc
  Observed: Conc
Tip

Note that the local assignment := can be used to define intermediate statements that will not be carried outside of the block. This means that all the resulting data workflows from this model will not contain the intermediate variables defined with :=. We use this when we want to suppress the variable from any further output.

The idea behind := is for performance reasons. If you are not carrying the variable defined with := outside of the block, then it is not necessary to store it in the resulting data structures. Not only will your model run faster, but the resulting data structures will also be smaller.

Before going to fit the model, let’s evaluate some helpful steps via simulation to check appropriateness of data and model

# zero out the random effects
etas = zero_randeffs(pk_1cmp, init_params(pk_1cmp), pkpain_noplb)

Above, we are generating a vector of η’s of the same length as the number of subjects to zero out the random effects. We do this as we are evaluating the trajectories of the concentrations at the initial set of parameters at a population level. Other helper functions here are sample_randeffs and init_randeffs. Please refer to the documentation.

simpk_iparams = simobs(pk_1cmp, pkpain_noplb, init_params(pk_1cmp), etas)
Simulated population (Vector{<:Subject})
  Simulated subjects: 120
  Simulated variables: Conc
sim_plot(
    pk_1cmp,
    simpk_iparams;
    observations = [:Conc],
    figure = (; fontsize = 18),
    axis = (;
        xlabel = "Time (hr)",
        ylabel = "Observed/Predicted \n CTMx Concentration (ng/mL)",
    ),
)

A simulated observations versus time plot overlaid with the scatter plot of the observed observations

Simulated Observations Plot

Our NCA based initial guess on the parameters seem to work well.

Lets change the initial estimate of a couple of the parameters to evaluate the sensitivity.

pkparam = (; init_params(pk_1cmp)..., tvka = 2, tvv = 10)
(tvcl = 3.2,
 tvv = 10,
 tvka = 2,
 Ω = [0.04 0.0 0.0; 0.0 0.04 0.0; 0.0 0.0 0.04],
 σ_p = 0.2,)
simpk_changedpars = simobs(pk_1cmp, pkpain_noplb, pkparam, etas)
Simulated population (Vector{<:Subject})
  Simulated subjects: 120
  Simulated variables: Conc
sim_plot(
    pk_1cmp,
    simpk_changedpars;
    observations = [:Conc],
    figure = (; fontsize = 18),
    axis = (
        xlabel = "Time (hr)",
        ylabel = "Observed/Predicted \n CTMx Concentration (ng/mL)",
    ),
)

A simulated observations versus time plot overlaid with the scatter plot of the observed observations

Simulated Observations Plot

Changing the tvka and decreasing the tvv seemed to make an impact and observations go through the simulated lines.

To get a quick ballpark estimate of your PK parameters, we can do a NaivePooled analysis.

3.2.2.1 NaivePooled
pkfit_np = fit(pk_1cmp, pkpain_noplb, init_params(pk_1cmp), NaivePooled(); omegas = (:Ω,))
[ Info: Checking the initial parameter values.
[ Info: The initial negative log likelihood and its gradient are finite. Check passed.
Iter     Function value   Gradient norm 
     0     7.744356e+02     3.715711e+03
 * time: 1.713428020477295
     1     2.343899e+02     1.747348e+03
 * time: 2.442026138305664
     2     9.696232e+01     1.198088e+03
 * time: 2.4444739818573
     3    -7.818699e+01     5.538151e+02
 * time: 2.446171998977661
     4    -1.234803e+02     2.462514e+02
 * time: 2.447812080383301
     5    -1.372888e+02     2.067458e+02
 * time: 2.4494149684906006
     6    -1.410579e+02     1.162950e+02
 * time: 2.4510200023651123
     7    -1.434754e+02     5.632816e+01
 * time: 2.4526379108428955
     8    -1.453401e+02     7.859270e+01
 * time: 2.4542629718780518
     9    -1.498185e+02     1.455606e+02
 * time: 2.4559760093688965
    10    -1.534371e+02     1.303682e+02
 * time: 2.4577670097351074
    11    -1.563557e+02     5.975474e+01
 * time: 2.459545135498047
    12    -1.575052e+02     9.308611e+00
 * time: 2.4613120555877686
    13    -1.579357e+02     1.234484e+01
 * time: 2.4630699157714844
    14    -1.581874e+02     7.478196e+00
 * time: 2.464935064315796
    15    -1.582981e+02     2.027162e+00
 * time: 2.4668431282043457
    16    -1.583375e+02     5.578262e+00
 * time: 2.4688150882720947
    17    -1.583556e+02     4.727050e+00
 * time: 2.470684051513672
    18    -1.583644e+02     2.340173e+00
 * time: 2.472554922103882
    19    -1.583680e+02     7.738100e-01
 * time: 2.474376916885376
    20    -1.583696e+02     3.300689e-01
 * time: 2.476161003112793
    21    -1.583704e+02     3.641985e-01
 * time: 2.4778950214385986
    22    -1.583707e+02     4.365901e-01
 * time: 2.479696035385132
    23    -1.583709e+02     3.887800e-01
 * time: 2.481490135192871
    24    -1.583710e+02     2.766977e-01
 * time: 2.4845259189605713
    25    -1.583710e+02     1.758029e-01
 * time: 2.4865050315856934
    26    -1.583710e+02     1.133947e-01
 * time: 2.488286018371582
    27    -1.583710e+02     7.922544e-02
 * time: 2.4899449348449707
    28    -1.583710e+02     5.954998e-02
 * time: 2.4916179180145264
    29    -1.583710e+02     4.157079e-02
 * time: 2.493360996246338
    30    -1.583710e+02     4.295447e-02
 * time: 2.4951469898223877
    31    -1.583710e+02     5.170753e-02
 * time: 2.4969370365142822
    32    -1.583710e+02     2.644383e-02
 * time: 2.4993410110473633
    33    -1.583710e+02     4.548993e-03
 * time: 2.5019009113311768
    34    -1.583710e+02     2.501804e-02
 * time: 2.504662036895752
    35    -1.583710e+02     3.763440e-02
 * time: 2.506448984146118
    36    -1.583710e+02     3.206026e-02
 * time: 2.508155107498169
    37    -1.583710e+02     1.003698e-02
 * time: 2.5097649097442627
    38    -1.583710e+02     2.209089e-02
 * time: 2.5112879276275635
    39    -1.583710e+02     4.954172e-03
 * time: 2.5127999782562256
    40    -1.583710e+02     1.609373e-02
 * time: 2.5153090953826904
    41    -1.583710e+02     1.579802e-02
 * time: 2.516775131225586
    42    -1.583710e+02     1.014113e-03
 * time: 2.5185680389404297
    43    -1.583710e+02     6.050644e-03
 * time: 2.5210371017456055
    44    -1.583710e+02     1.354412e-02
 * time: 2.5228641033172607
    45    -1.583710e+02     4.473248e-03
 * time: 2.524730920791626
    46    -1.583710e+02     4.644735e-03
 * time: 2.5261189937591553
    47    -1.583710e+02     9.829910e-03
 * time: 2.527967929840088
    48    -1.583710e+02     1.047561e-03
 * time: 2.529910087585449
    49    -1.583710e+02     8.366895e-03
 * time: 2.531398057937622
    50    -1.583710e+02     7.879055e-04
 * time: 2.533268928527832
FittedPumasModel

Successful minimization:                      true

Likelihood approximation:              NaivePooled
Likelihood Optimizer:                         BFGS
Dynamical system type:                 Closed form

Log-likelihood value:                    158.37103
Number of subjects:                            120
Number of parameters:         Fixed      Optimized
                                  1              6
Observation records:         Active        Missing
    Conc:                      1320              0
    Total:                     1320              0

------------------
         Estimate
------------------
tvcl      3.0054
tvv      14.089
tvka     44.228
Ω₁,₁      0.0
Ω₂,₂      0.0
Ω₃,₃      0.0
σ_p       0.32999
------------------
coefficients_table(pkfit_np)
7×3 DataFrame
Row Parameter Description Estimate
String Abstract… Float64
1 tvcl Clearance (L/hr)\n 3.005
2 tvv Volume (L)\n 14.089
3 tvka Absorption rate constant (h-1)\n 44.228
4 Ω₁,₁ ΩCL 0.0
5 Ω₂,₂ ΩVc 0.0
6 Ω₃,₃ ΩKa 0.0
7 σ_p Proportional RUV\n 0.33

The final estimates from the NaivePooled approach seem reasonably close to our initial guess from NCA, except for the tvka parameter. We will stick with our initial guess.

One way to be cautious before going into a complete fitting routine is to evaluate the likelihood of the individual subjects given the initial parameter values and see if any subject(s) pops out as unreasonable. There are a few ways of doing this:

  • check the loglikelihood subject wise
  • check if there any influential subjects

Below, we are basically checking if the initial estimates for any subject are way off that we are unable to compute the initial loglikelihood.

lls = []
for subj in pkpain_noplb
    push!(lls, loglikelihood(pk_1cmp, subj, pkparam, FOCE()))
end
# the plot below is using native CairoMakie `hist`
hist(lls; bins = 10, normalization = :none, color = (:black, 0.5))

A histogram of the individual loglikelihoods

Histogram of Loglikelihoods

The distribution of the loglikelihood’s suggest no extreme outliers.

A more convenient way is to use the findinfluential function that provides a list of k top influential subjects by showing the normalized (minus) loglikelihood for each subject. As you can see below, the minus loglikelihood in the range of 16 agrees with the histogram plotted above.

influential_subjects = findinfluential(pk_1cmp, pkpain_noplb, pkparam, FOCE())
120-element Vector{@NamedTuple{id::String, nll::Float64}}:
 (id = "148", nll = 16.65965885684477)
 (id = "135", nll = 16.648985190076335)
 (id = "156", nll = 15.959069556607496)
 (id = "159", nll = 15.441218240496484)
 (id = "149", nll = 14.71513464411951)
 (id = "88", nll = 13.09709837464614)
 (id = "16", nll = 12.98228052193144)
 (id = "61", nll = 12.652182902303679)
 (id = "71", nll = 12.500330088085505)
 (id = "59", nll = 12.241510254805235)
 ⋮
 (id = "57", nll = -22.79767423253431)
 (id = "93", nll = -22.836900711478208)
 (id = "12", nll = -23.007742339519247)
 (id = "123", nll = -23.292751843079234)
 (id = "41", nll = -23.425412534960515)
 (id = "99", nll = -23.535214841901112)
 (id = "29", nll = -24.025959868383083)
 (id = "52", nll = -24.164757842493685)
 (id = "24", nll = -25.57209232565845)
3.2.2.2 FOCE

Now that we have a good handle on our data, lets go ahead and fit a population model with FOCE:

pkfit_1cmp = fit(pk_1cmp, pkpain_noplb, pkparam, FOCE(); constantcoef = (; tvka = 2))
[ Info: Checking the initial parameter values.
[ Info: The initial negative log likelihood and its gradient are finite. Check passed.
Iter     Function value   Gradient norm 
     0    -5.935351e+02     5.597318e+02
 * time: 7.581710815429688e-5
     1    -7.022088e+02     1.707063e+02
 * time: 0.31902599334716797
     2    -7.314067e+02     2.903269e+02
 * time: 0.5302929878234863
     3    -8.520591e+02     2.285888e+02
 * time: 0.6740000247955322
     4    -1.120191e+03     3.795410e+02
 * time: 1.0613529682159424
     5    -1.178784e+03     2.323978e+02
 * time: 1.197326898574829
     6    -1.218320e+03     9.699907e+01
 * time: 1.3325469493865967
     7    -1.223641e+03     5.862105e+01
 * time: 1.4668078422546387
     8    -1.227620e+03     1.831403e+01
 * time: 1.628661870956421
     9    -1.228381e+03     2.132323e+01
 * time: 1.7356178760528564
    10    -1.230098e+03     2.921228e+01
 * time: 1.861311912536621
    11    -1.230854e+03     2.029662e+01
 * time: 1.9884798526763916
    12    -1.231116e+03     5.229097e+00
 * time: 2.132563829421997
    13    -1.231179e+03     1.689232e+00
 * time: 2.230721950531006
    14    -1.231187e+03     1.215379e+00
 * time: 2.3364429473876953
    15    -1.231188e+03     2.770380e-01
 * time: 2.43475079536438
    16    -1.231188e+03     1.636653e-01
 * time: 2.5534520149230957
    17    -1.231188e+03     2.701133e-01
 * time: 2.6290578842163086
    18    -1.231188e+03     3.163363e-01
 * time: 2.706772804260254
    19    -1.231188e+03     1.505149e-01
 * time: 2.793069839477539
    20    -1.231188e+03     2.484999e-02
 * time: 2.8723859786987305
    21    -1.231188e+03     8.446863e-04
 * time: 2.978125810623169
FittedPumasModel

Successful minimization:                      true

Likelihood approximation:                     FOCE
Likelihood Optimizer:                         BFGS
Dynamical system type:                 Closed form

Log-likelihood value:                     1231.188
Number of subjects:                            120
Number of parameters:         Fixed      Optimized
                                  1              6
Observation records:         Active        Missing
    Conc:                      1320              0
    Total:                     1320              0

-------------------
         Estimate
-------------------
tvcl      3.1642
tvv      13.288
tvka      2.0
Ω₁,₁      0.08494
Ω₂,₂      0.048568
Ω₃,₃      5.5811
σ_p       0.10093
-------------------
infer(pkfit_1cmp)
[ Info: Calculating: variance-covariance matrix.
[ Info: Done.
Asymptotic inference results using sandwich estimator

Successful minimization:                      true

Likelihood approximation:                     FOCE
Likelihood Optimizer:                         BFGS
Dynamical system type:                 Closed form

Log-likelihood value:                     1231.188
Number of subjects:                            120
Number of parameters:         Fixed      Optimized
                                  1              6
Observation records:         Active        Missing
    Conc:                      1320              0
    Total:                     1320              0

-------------------------------------------------------------------
        Estimate           SE                     95.0% C.I.
-------------------------------------------------------------------
tvcl     3.1642          0.08662          [ 2.9944  ;  3.334   ]
tvv     13.288           0.27481          [12.749   ; 13.827   ]
tvka     2.0             NaN              [  NaN    ;   NaN      ]
Ω₁,₁     0.08494         0.011022         [ 0.063338;  0.10654 ]
Ω₂,₂     0.048568        0.0063502        [ 0.036122;  0.061014]
Ω₃,₃     5.5811          1.2188           [ 3.1922  ;  7.97    ]
σ_p      0.10093         0.0057196        [ 0.089718;  0.11214 ]
-------------------------------------------------------------------

Notice that tvka is fixed to 2 as we don’t have a lot of information before tmax. From the results above, we see that the parameter precision for this model is reasonable.

3.2.3 Two-compartment model

Just to be sure, let’s fit a 2-compartment model and evaluate:

pk_2cmp = @model begin

    @param begin
        """
        Clearance (L/hr)
        """
        tvcl  RealDomain(; lower = 0, init = 3.2)
        """
        Central Volume (L)
        """
        tvv  RealDomain(; lower = 0, init = 16.4)
        """
        Peripheral Volume (L)
        """
        tvvp  RealDomain(; lower = 0, init = 10)
        """
        Distributional Clearance (L/hr)
        """
        tvq  RealDomain(; lower = 0, init = 2)
        """
        Absorption rate constant (h-1)
        """
        tvka  RealDomain(; lower = 0, init = 1.3)
        """
          - ΩCL
          - ΩVc
          - ΩKa
          - ΩVp
          - ΩQ
        """
        Ω  PDiagDomain(init = [0.04, 0.04, 0.04, 0.04, 0.04])
        """
        Proportional RUV
        """
        σ_p  RealDomain(; lower = 0.0001, init = 0.2)
    end

    @random begin
        η ~ MvNormal(Ω)
    end

    @covariates begin
        """
        Dose (mg)
        """
        Dose
    end

    @pre begin
        CL = tvcl * exp(η[1])
        Vc = tvv * exp(η[2])
        Ka = tvka * exp(η[3])
        Vp = tvvp * exp(η[4])
        Q = tvq * exp(η[5])
    end

    @dynamics Depots1Central1Periph1

    @derived begin
        cp := @. Central / Vc
        """
        CTMx Concentration (ng/mL)
        """
        Conc ~ @. Normal(cp, cp * σ_p)
    end
end
┌ Warning: Covariate Dose is not used in the model.
└ @ Pumas ~/_work/PumasTutorials.jl/PumasTutorials.jl/custom_julia_depot/packages/Pumas/aZRyj/src/dsl/model_macro.jl:2856
PumasModel
  Parameters: tvcl, tvv, tvvp, tvq, tvka, Ω, σ_p
  Random effects: η
  Covariates: Dose
  Dynamical system variables: Depot, Central, Peripheral
  Dynamical system type: Closed form
  Derived: Conc
  Observed: Conc
3.2.3.1 FOCE
pkfit_2cmp =
    fit(pk_2cmp, pkpain_noplb, init_params(pk_2cmp), FOCE(); constantcoef = (; tvka = 2))
[ Info: Checking the initial parameter values.
[ Info: The initial negative log likelihood and its gradient are finite. Check passed.
Iter     Function value   Gradient norm 
     0    -6.302369e+02     1.021050e+03
 * time: 6.794929504394531e-5
     1    -9.197817e+02     9.927951e+02
 * time: 0.30261683464050293
     2    -1.372640e+03     2.054986e+02
 * time: 0.5687398910522461
     3    -1.446326e+03     1.543987e+02
 * time: 0.8557100296020508
     4    -1.545570e+03     1.855028e+02
 * time: 1.1449289321899414
     5    -1.581449e+03     1.713157e+02
 * time: 1.572429895401001
     6    -1.639433e+03     1.257382e+02
 * time: 1.8320250511169434
     7    -1.695964e+03     7.450539e+01
 * time: 2.093984842300415
     8    -1.722243e+03     5.961044e+01
 * time: 2.3543899059295654
     9    -1.736883e+03     7.320921e+01
 * time: 2.6266160011291504
    10    -1.753547e+03     7.501938e+01
 * time: 2.8995280265808105
    11    -1.764053e+03     6.185661e+01
 * time: 3.180608034133911
    12    -1.778991e+03     4.831033e+01
 * time: 3.4747869968414307
    13    -1.791492e+03     4.943278e+01
 * time: 3.785245895385742
    14    -1.799847e+03     2.871410e+01
 * time: 4.112076044082642
    15    -1.805374e+03     7.520791e+01
 * time: 4.435018062591553
    16    -1.816260e+03     2.990621e+01
 * time: 4.746316909790039
    17    -1.818252e+03     2.401915e+01
 * time: 5.0217649936676025
    18    -1.822988e+03     2.587225e+01
 * time: 5.310658931732178
    19    -1.824653e+03     1.550517e+01
 * time: 5.57533597946167
    20    -1.826074e+03     1.788927e+01
 * time: 5.853234052658081
    21    -1.826821e+03     1.888389e+01
 * time: 6.1313090324401855
    22    -1.827900e+03     1.432840e+01
 * time: 6.407709836959839
    23    -1.828511e+03     9.422041e+00
 * time: 6.692572832107544
    24    -1.828754e+03     5.363442e+00
 * time: 6.984563827514648
    25    -1.828862e+03     4.916159e+00
 * time: 7.260490894317627
    26    -1.829007e+03     4.695755e+00
 * time: 7.536607027053833
    27    -1.829358e+03     1.090249e+01
 * time: 7.844152927398682
    28    -1.829830e+03     1.451325e+01
 * time: 8.135375022888184
    29    -1.830201e+03     1.108715e+01
 * time: 8.42812204360962
    30    -1.830360e+03     2.891223e+00
 * time: 8.720229864120483
    31    -1.830390e+03     1.695557e+00
 * time: 8.996635913848877
    32    -1.830404e+03     1.601712e+00
 * time: 9.272814989089966
    33    -1.830432e+03     2.823385e+00
 * time: 9.54322600364685
    34    -1.830477e+03     4.060617e+00
 * time: 9.825235843658447
    35    -1.830528e+03     5.133499e+00
 * time: 10.111971855163574
    36    -1.830593e+03     2.830970e+00
 * time: 10.401591062545776
    37    -1.830616e+03     3.342835e+00
 * time: 10.683997869491577
    38    -1.830622e+03     3.708884e+00
 * time: 10.96933889389038
    39    -1.830625e+03     2.062934e+00
 * time: 11.237452030181885
    40    -1.830627e+03     1.278569e+00
 * time: 11.486078023910522
    41    -1.830628e+03     1.832895e+00
 * time: 11.753257036209106
    42    -1.830628e+03     3.768840e-01
 * time: 12.002631902694702
    43    -1.830629e+03     3.152895e-01
 * time: 12.23666501045227
    44    -1.830630e+03     4.871060e-01
 * time: 12.495190858840942
    45    -1.830630e+03     3.110627e-01
 * time: 12.7477388381958
    46    -1.830630e+03     2.687758e-02
 * time: 12.99698805809021
    47    -1.830630e+03     4.694018e-03
 * time: 13.185861825942993
    48    -1.830630e+03     8.272969e-03
 * time: 13.386101007461548
    49    -1.830630e+03     8.249151e-03
 * time: 13.643970966339111
    50    -1.830630e+03     8.245562e-03
 * time: 13.954442977905273
    51    -1.830630e+03     8.240030e-03
 * time: 14.268861055374146
    52    -1.830630e+03     8.240030e-03
 * time: 14.629942893981934
    53    -1.830630e+03     8.240030e-03
 * time: 14.964189052581787
FittedPumasModel

Successful minimization:                      true

Likelihood approximation:                     FOCE
Likelihood Optimizer:                         BFGS
Dynamical system type:                 Closed form

Log-likelihood value:                    1830.6304
Number of subjects:                            120
Number of parameters:         Fixed      Optimized
                                  1             10
Observation records:         Active        Missing
    Conc:                      1320              0
    Total:                     1320              0

-------------------
         Estimate
-------------------
tvcl      2.8138
tvv      11.005
tvvp      5.54
tvq       1.5159
tvka      2.0
Ω₁,₁      0.10267
Ω₂,₂      0.060776
Ω₃,₃      1.2012
Ω₄,₄      0.4235
Ω₅,₅      0.24473
σ_p       0.048405
-------------------

3.3 Comparing One- versus Two-compartment models

The 2-compartment model has a much lower objective function compared to the 1-compartment. Let’s compare the estimates from the 2 models using the compare_estimates function.

compare_estimates(; pkfit_1cmp, pkfit_2cmp)
11×3 DataFrame
Row parameter pkfit_1cmp pkfit_2cmp
String Float64? Float64?
1 tvcl 3.1642 2.81378
2 tvv 13.288 11.0046
3 tvka 2.0 2.0
4 Ω₁,₁ 0.0849405 0.102669
5 Ω₂,₂ 0.0485682 0.0607757
6 Ω₃,₃ 5.58107 1.20115
7 σ_p 0.100928 0.0484049
8 tvvp missing 5.53998
9 tvq missing 1.51591
10 Ω₄,₄ missing 0.423495
11 Ω₅,₅ missing 0.244731

We perform a likelihood ratio test to compare the two nested models. The test statistic and the \(p\)-value clearly indicate that a 2-compartment model should be preferred.

lrtest(pkfit_1cmp, pkfit_2cmp)
Statistic:          1200.0
Degrees of freedom:      4
P-value:               0.0

We should also compare the other metrics and statistics, such ηshrinkage, ϵshrinkage, aic, and bic using the metrics_table function.

@chain metrics_table(pkfit_2cmp) begin
    leftjoin(metrics_table(pkfit_1cmp); on = :Metric, makeunique = true)
    rename!(:Value => :pk2cmp, :Value_1 => :pk1cmp)
end
20×3 DataFrame
Row Metric pk2cmp pk1cmp
String Any Any
1 Successful true true
2 Estimation Time 14.964 2.978
3 Subjects 120 120
4 Fixed Parameters 1 1
5 Optimized Parameters 10 6
6 Conc Active Observations 1320 1320
7 Conc Missing Observations 0 0
8 Total Active Observations 1320 1320
9 Total Missing Observations 0 0
10 Likelihood Approximation Pumas.FOCE{Optim.NewtonTrustRegion{Float64}, Optim.Options{Float64, Nothing}} Pumas.FOCE{Optim.NewtonTrustRegion{Float64}, Optim.Options{Float64, Nothing}}
11 LogLikelihood (LL) 1830.63 1231.19
12 -2LL -3661.26 -2462.38
13 AIC -3641.26 -2450.38
14 BIC -3589.41 -2419.26
15 (η-shrinkage) η₁ 0.037 0.016
16 (η-shrinkage) η₂ 0.047 0.04
17 (η-shrinkage) η₃ 0.516 0.733
18 (ϵ-shrinkage) Conc 0.185 0.105
19 (η-shrinkage) η₄ 0.287 missing
20 (η-shrinkage) η₅ 0.154 missing

We next generate some goodness of fit plots to compare which model is performing better. To do this, we first inspect the diagnostics of our model fit.

res_inspect_1cmp = inspect(pkfit_1cmp)
[ Info: Calculating predictions.
[ Info: Calculating weighted residuals.
[ Info: Calculating empirical bayes.
[ Info: Evaluating individual parameters.
[ Info: Evaluating dose control parameters.
[ Info: Done.
FittedPumasModelInspection

Fitting was successful: true
Likehood approximation used for weighted residuals : Pumas.FOCE{Optim.NewtonTrustRegion{Float64}, Optim.Options{Float64, Nothing}}(Optim.NewtonTrustRegion{Float64}(1.0, 100.0, 1.4901161193847656e-8, 0.1, 0.25, 0.75, false), Optim.Options(x_abstol = 0.0, x_reltol = 0.0, f_abstol = 0.0, f_reltol = 0.0, g_abstol = 1.0e-5, g_reltol = 1.0e-8, outer_x_abstol = 0.0, outer_x_reltol = 0.0, outer_f_abstol = 0.0, outer_f_reltol = 0.0, outer_g_abstol = 1.0e-8, outer_g_reltol = 1.0e-8, f_calls_limit = 0, g_calls_limit = 0, h_calls_limit = 0, allow_f_increases = false, allow_outer_f_increases = true, successive_f_tol = 1, iterations = 1000, outer_iterations = 1000, store_trace = false, trace_simplex = false, show_trace = false, extended_trace = false, show_warnings = true, show_every = 1, time_limit = NaN, )
)
res_inspect_2cmp = inspect(pkfit_2cmp)
[ Info: Calculating predictions.
[ Info: Calculating weighted residuals.
[ Info: Calculating empirical bayes.
[ Info: Evaluating individual parameters.
[ Info: Evaluating dose control parameters.
[ Info: Done.
FittedPumasModelInspection

Fitting was successful: true
Likehood approximation used for weighted residuals : Pumas.FOCE{Optim.NewtonTrustRegion{Float64}, Optim.Options{Float64, Nothing}}(Optim.NewtonTrustRegion{Float64}(1.0, 100.0, 1.4901161193847656e-8, 0.1, 0.25, 0.75, false), Optim.Options(x_abstol = 0.0, x_reltol = 0.0, f_abstol = 0.0, f_reltol = 0.0, g_abstol = 1.0e-5, g_reltol = 1.0e-8, outer_x_abstol = 0.0, outer_x_reltol = 0.0, outer_f_abstol = 0.0, outer_f_reltol = 0.0, outer_g_abstol = 1.0e-8, outer_g_reltol = 1.0e-8, f_calls_limit = 0, g_calls_limit = 0, h_calls_limit = 0, allow_f_increases = false, allow_outer_f_increases = true, successive_f_tol = 1, iterations = 1000, outer_iterations = 1000, store_trace = false, trace_simplex = false, show_trace = false, extended_trace = false, show_warnings = true, show_every = 1, time_limit = NaN, )
)
gof_1cmp = goodness_of_fit(res_inspect_1cmp; figure = (; fontsize = 12))

A 4-mosaic goodness of fit plot showing the 1-compartment model

Goodness of Fit Plots
gof_2cmp = goodness_of_fit(res_inspect_2cmp; figure = (; fontsize = 12))

Trend plot with observations for all individual subjects over time

Subject Fits

These plots clearly indicate that the 2-compartment model is a better fit compared to the 1-compartment model.

We can look at selected sample of individual plots.

fig_subject_fits = subject_fits(
    res_inspect_2cmp;
    separate = true,
    paginate = true,
    facet = (; combinelabels = true),
    figure = (; fontsize = 18),
    axis = (; xlabel = "Time (hr)", ylabel = "CTMx Concentration (ng/mL)"),
)
fig_subject_fits[1]

Trend plot with observations for 4 individual subjects over time

Subject Fits for 4 Individuals

There a lot of important plotting functions you can use for your standard model diagnostics. Please make sure to read the documentation for plotting. Below, we are checking the distribution of the empirical Bayes estimates.

empirical_bayes_dist(res_inspect_2cmp; zeroline_color = :red)

A histogram for the empirical Bayes distribution of all subject-specific parameters

Empirical Bayes Distribution
empirical_bayes_vs_covariates(
    res_inspect_2cmp;
    categorical = [:Dose],
    figure = (; size = (600, 800)),
)

A histogram for the empirical Bayes distribution of all subject-specific parameters stratified by categorical covariates

Empirical Bayes Distribution Stratified by Covariates

Clearly, our guess at tvka seems off-target. Let’s try and estimate tvka instead of fixing it to 2:

pkfit_2cmp_unfix_ka = fit(pk_2cmp, pkpain_noplb, init_params(pk_2cmp), FOCE())
[ Info: Checking the initial parameter values.
[ Info: The initial negative log likelihood and its gradient are finite. Check passed.
Iter     Function value   Gradient norm 
     0    -3.200734e+02     1.272671e+03
 * time: 7.200241088867188e-5
     1    -8.682982e+02     1.000199e+03
 * time: 0.334136962890625
     2    -1.381870e+03     5.008081e+02
 * time: 0.6585738658905029
     3    -1.551053e+03     6.833490e+02
 * time: 1.004654884338379
     4    -1.680887e+03     1.834586e+02
 * time: 1.3426499366760254
     5    -1.726118e+03     8.870274e+01
 * time: 1.672989845275879
     6    -1.761023e+03     1.162036e+02
 * time: 1.9619579315185547
     7    -1.786619e+03     1.114552e+02
 * time: 2.284024953842163
     8    -1.863556e+03     9.914305e+01
 * time: 2.6183228492736816
     9    -1.882942e+03     5.342676e+01
 * time: 2.9576239585876465
    10    -1.888020e+03     2.010181e+01
 * time: 3.290156841278076
    11    -1.889832e+03     1.867263e+01
 * time: 3.5988688468933105
    12    -1.891649e+03     1.668512e+01
 * time: 3.922437906265259
    13    -1.892615e+03     1.820701e+01
 * time: 4.245962858200073
    14    -1.893453e+03     1.745195e+01
 * time: 4.573210000991821
    15    -1.894760e+03     1.850174e+01
 * time: 4.907455921173096
    16    -1.895647e+03     1.773939e+01
 * time: 5.196255922317505
    17    -1.896597e+03     1.143462e+01
 * time: 5.523356914520264
    18    -1.897114e+03     9.720097e+00
 * time: 5.844550848007202
    19    -1.897373e+03     6.054321e+00
 * time: 6.17809796333313
    20    -1.897498e+03     3.985954e+00
 * time: 6.47012996673584
    21    -1.897571e+03     4.262464e+00
 * time: 6.77438497543335
    22    -1.897633e+03     4.010234e+00
 * time: 7.079877853393555
    23    -1.897714e+03     4.805375e+00
 * time: 7.390949964523315
    24    -1.897802e+03     3.508706e+00
 * time: 7.71281886100769
    25    -1.897865e+03     3.691477e+00
 * time: 7.990954875946045
    26    -1.897900e+03     2.982720e+00
 * time: 8.293629884719849
    27    -1.897928e+03     2.563790e+00
 * time: 8.590051889419556
    28    -1.897968e+03     3.261485e+00
 * time: 8.899805784225464
    29    -1.898013e+03     3.064690e+00
 * time: 9.173626899719238
    30    -1.898040e+03     1.636525e+00
 * time: 9.478863954544067
    31    -1.898051e+03     1.439997e+00
 * time: 9.785226821899414
    32    -1.898057e+03     1.436504e+00
 * time: 10.089764833450317
    33    -1.898069e+03     1.881529e+00
 * time: 10.363648891448975
    34    -1.898095e+03     3.253165e+00
 * time: 10.662033796310425
    35    -1.898142e+03     4.257942e+00
 * time: 10.963122844696045
    36    -1.898199e+03     3.685241e+00
 * time: 11.275807857513428
    37    -1.898245e+03     2.567364e+00
 * time: 11.60645580291748
    38    -1.898246e+03     2.561591e+00
 * time: 12.055300951004028
    39    -1.898251e+03     2.530888e+00
 * time: 12.457650899887085
    40    -1.898298e+03     2.673696e+00
 * time: 12.74339485168457
    41    -1.898300e+03     2.794639e+00
 * time: 13.127835988998413
    42    -1.898337e+03     3.751590e+00
 * time: 13.574963808059692
    43    -1.898421e+03     4.878407e+00
 * time: 13.898703813552856
    44    -1.898433e+03     4.391719e+00
 * time: 14.29328179359436
    45    -1.898437e+03     4.216518e+00
 * time: 14.771390914916992
    46    -1.898442e+03     4.108397e+00
 * time: 15.238492012023926
    47    -1.898446e+03     3.934902e+00
 * time: 15.715795993804932
    48    -1.898449e+03     3.769838e+00
 * time: 16.18308401107788
    49    -1.898450e+03     3.739486e+00
 * time: 16.652670860290527
    50    -1.898450e+03     3.712049e+00
 * time: 17.13361382484436
    51    -1.898457e+03     3.623436e+00
 * time: 17.548874855041504
    52    -1.898471e+03     2.668312e+00
 * time: 17.873390913009644
    53    -1.898479e+03     2.302438e+00
 * time: 18.195745944976807
    54    -1.898480e+03     2.386566e-01
 * time: 18.51852798461914
    55    -1.898480e+03     7.802040e-01
 * time: 18.783370971679688
    56    -1.898480e+03     7.369786e-01
 * time: 19.225034952163696
    57    -1.898480e+03     5.113191e-01
 * time: 19.603256940841675
    58    -1.898480e+03     3.067709e-01
 * time: 19.88420581817627
    59    -1.898480e+03     3.076791e-01
 * time: 20.178939819335938
    60    -1.898480e+03     3.102066e-01
 * time: 20.444341897964478
    61    -1.898480e+03     3.102066e-01
 * time: 20.824752807617188
    62    -1.898480e+03     3.102069e-01
 * time: 21.268054962158203
    63    -1.898480e+03     3.102071e-01
 * time: 21.931060791015625
    64    -1.898480e+03     3.102074e-01
 * time: 22.568915843963623
    65    -1.898480e+03     3.102076e-01
 * time: 23.217228889465332
    66    -1.898480e+03     3.102079e-01
 * time: 23.872769832611084
    67    -1.898480e+03     3.102081e-01
 * time: 24.534252882003784
    68    -1.898480e+03     3.102081e-01
 * time: 25.236604928970337
    69    -1.898480e+03     3.102081e-01
 * time: 25.886016845703125
    70    -1.898480e+03     3.102082e-01
 * time: 26.524367809295654
    71    -1.898480e+03     3.102082e-01
 * time: 27.200507879257202
    72    -1.898480e+03     3.102082e-01
 * time: 27.857213973999023
    73    -1.898480e+03     3.102102e-01
 * time: 28.491069793701172
    74    -1.898480e+03     3.102102e-01
 * time: 29.05099391937256
    75    -1.898480e+03     3.102096e-01
 * time: 29.514575004577637
    76    -1.898480e+03     3.102096e-01
 * time: 29.990442991256714
    77    -1.898480e+03     3.125688e-01
 * time: 30.432599782943726
    78    -1.898480e+03     3.125640e-01
 * time: 30.88490390777588
    79    -1.898480e+03     3.125618e-01
 * time: 31.324219942092896
    80    -1.898480e+03     3.125615e-01
 * time: 31.807673931121826
    81    -1.898480e+03     3.125612e-01
 * time: 32.29063391685486
    82    -1.898480e+03     3.125610e-01
 * time: 32.785194873809814
    83    -1.898480e+03     3.125609e-01
 * time: 33.3365797996521
    84    -1.898480e+03     3.125604e-01
 * time: 33.816112995147705
    85    -1.898480e+03     3.125602e-01
 * time: 34.27131390571594
    86    -1.898480e+03     3.125602e-01
 * time: 34.777485847473145
    87    -1.898480e+03     3.125602e-01
 * time: 35.48393678665161
    88    -1.898480e+03     3.125602e-01
 * time: 36.17909598350525
    89    -1.898480e+03     3.125602e-01
 * time: 36.90882682800293
    90    -1.898480e+03     3.125602e-01
 * time: 37.60477900505066
    91    -1.898480e+03     3.125602e-01
 * time: 38.33198380470276
    92    -1.898480e+03     3.125602e-01
 * time: 38.81040978431702
    93    -1.898480e+03     3.125602e-01
 * time: 39.30093693733215
    94    -1.898480e+03     3.125602e-01
 * time: 39.77143383026123
    95    -1.898480e+03     1.387453e-01
 * time: 40.117082834243774
    96    -1.898480e+03     1.387453e-01
 * time: 40.50619196891785
    97    -1.898480e+03     1.387453e-01
 * time: 40.99233078956604
    98    -1.898480e+03     1.387453e-01
 * time: 41.53955292701721
    99    -1.898480e+03     1.387453e-01
 * time: 41.907896995544434
FittedPumasModel

Successful minimization:                      true

Likelihood approximation:                     FOCE
Likelihood Optimizer:                         BFGS
Dynamical system type:                 Closed form

Log-likelihood value:                    1898.4797
Number of subjects:                            120
Number of parameters:         Fixed      Optimized
                                  0             11
Observation records:         Active        Missing
    Conc:                      1320              0
    Total:                     1320              0

-------------------
         Estimate
-------------------
tvcl      2.6191
tvv      11.378
tvvp      8.453
tvq       1.3164
tvka      4.8926
Ω₁,₁      0.13243
Ω₂,₂      0.059669
Ω₃,₃      0.41581
Ω₄,₄      0.080679
Ω₅,₅      0.24996
σ_p       0.049097
-------------------
compare_estimates(; pkfit_2cmp, pkfit_2cmp_unfix_ka)
11×3 DataFrame
Row parameter pkfit_2cmp pkfit_2cmp_unfix_ka
String Float64? Float64?
1 tvcl 2.81378 2.6191
2 tvv 11.0046 11.3784
3 tvvp 5.53998 8.45297
4 tvq 1.51591 1.31637
5 tvka 2.0 4.89257
6 Ω₁,₁ 0.102669 0.132432
7 Ω₂,₂ 0.0607757 0.0596693
8 Ω₃,₃ 1.20115 0.415811
9 Ω₄,₄ 0.423495 0.0806789
10 Ω₅,₅ 0.244731 0.249956
11 σ_p 0.0484049 0.0490975

Let’s revaluate the goodness of fits and η distribution plots.

Not much change in the general gof plots

res_inspect_2cmp_unfix_ka = inspect(pkfit_2cmp_unfix_ka)
[ Info: Calculating predictions.
[ Info: Calculating weighted residuals.
[ Info: Calculating empirical bayes.
[ Info: Evaluating individual parameters.
[ Info: Evaluating dose control parameters.
[ Info: Done.
FittedPumasModelInspection

Fitting was successful: true
Likehood approximation used for weighted residuals : Pumas.FOCE{Optim.NewtonTrustRegion{Float64}, Optim.Options{Float64, Nothing}}(Optim.NewtonTrustRegion{Float64}(1.0, 100.0, 1.4901161193847656e-8, 0.1, 0.25, 0.75, false), Optim.Options(x_abstol = 0.0, x_reltol = 0.0, f_abstol = 0.0, f_reltol = 0.0, g_abstol = 1.0e-5, g_reltol = 1.0e-8, outer_x_abstol = 0.0, outer_x_reltol = 0.0, outer_f_abstol = 0.0, outer_f_reltol = 0.0, outer_g_abstol = 1.0e-8, outer_g_reltol = 1.0e-8, f_calls_limit = 0, g_calls_limit = 0, h_calls_limit = 0, allow_f_increases = false, allow_outer_f_increases = true, successive_f_tol = 1, iterations = 1000, outer_iterations = 1000, store_trace = false, trace_simplex = false, show_trace = false, extended_trace = false, show_warnings = true, show_every = 1, time_limit = NaN, )
)
goodness_of_fit(res_inspect_2cmp_unfix_ka; figure = (; fontsize = 12))

A 4-mosaic goodness of fit plot showing the 2-compartment model

Goodness of Fit Plots

But you can see a huge improvement in the ηka, (η₃) distribution which is now centered around zero

empirical_bayes_vs_covariates(
    res_inspect_2cmp_unfix_ka;
    categorical = [:Dose],
    ebes = [:η₃],
    figure = (; size = (600, 800)),
)

A histogram for the empirical Bayes distribution of all subject-specific parameters stratified by categorical covariates

Empirical Bayes Distribution Stratified by Covariates

Finally looking at some individual plots for the same subjects as earlier:

fig_subject_fits2 = subject_fits(
    res_inspect_2cmp_unfix_ka;
    separate = true,
    paginate = true,
    facet = (; combinelabels = true, linkyaxes = false),
    figure = (; fontsize = 18),
    axis = (; xlabel = "Time (hr)", ylabel = "CTMx Concentration (ng/mL)"),
)
fig_subject_fits2[6]

Trend plot with observations for 4 individual subjects over time

Subject Fits for 4 Individuals

The randomly sampled individual fits don’t seem good in some individuals, but we can evaluate this via a vpc to see how to go about.

3.4 Visual Predictive Checks (VPC)

We can now perform a vpc to check. The default plots provide a 80% prediction interval and a 95% simulated CI (shaded area) around each of the quantiles

pk_vpc = vpc(
    pkfit_2cmp_unfix_ka,
    200;
    observations = [:Conc],
    stratify_by = [:Dose],
    ensemblealg = EnsembleThreads(), # multi-threading
)
[ Info: Continuous VPC
Visual Predictive Check
  Type of VPC: Continuous VPC
  Simulated populations: 200
  Subjects in data: 120
  Stratification variable(s): [:Dose]
  Confidence level: 0.95
  VPC lines: quantiles ([0.1, 0.5, 0.9])
vpc_plot(
    pk_2cmp,
    pk_vpc;
    rows = 1,
    columns = 3,
    figure = (; size = (1400, 1000), fontsize = 22),
    axis = (;
        xlabel = "Time (hr)",
        ylabel = "Observed/Predicted\n CTMx Concentration (ng/mL)",
    ),
    facet = (; combinelabels = true),
)

A visual predictive plot stratified by dose group

Visual Predictive Plots

The visual predictive check suggests that the model captures the data well across all dose levels.

4 Additional Help

If you have questions regarding this tutorial, please post them on our discourse site.