A Comprehensive Introduction to Pumas

Authors

Vijay Ivaturi

Jose Storopoli

This tutorial provides a comprehensive introduction to a modeling and simulation workflow in Pumas. The idea is not to get into the details of Pumas specifics, but instead provide a narrative on the lines of a regular workflow in our day-to-day work, with brevity where required to allow a broad overview. Wherever possible, cross-references will be provided to documentation and detailed examples that provide deeper insight into a particular topic.

As part of this workflow, you will be introduced to various aspects such as:

  1. Data wrangling in Julia
  2. Exploratory analysis in Julia
  3. Continuous data non-linear mixed effects modeling in Pumas
  4. Model comparison routines, post-processing, validation etc.

1 The Study and Design

CTMNopain is a novel anti-inflammatory agent under preliminary investigation. A dose-ranging trial was conducted comparing placebo with 3 doses of CTMNopain (5mg, 20mg and 80 mg QD). The maximum tolerated dose is 160 mg per day. Plasma concentrations (mg/L) of the drug were measured at 0, 0.5, 1, 1.5, 2, 2.5, 3-8 hours.

Pain score (0=no pain, 1=mild, 2=moderate, 3=severe) were obtained at time points when plasma concentration was collected. A pain score of 2 or more is considered as no pain relief.

The subjects can request for remedication if pain relief is not achieved after 2 hours post dose. Some subjects had remedication before 2 hours if they were not able to bear the pain. The time to remedication and the remedication status is available for subjects.

The pharmacokinetic dataset can be accessed using PharmaDatasets.jl.

2 Setup

2.1 Load libraries

These libraries provide the workhorse functionality in the Pumas ecosystem:

using Pumas
using PumasUtilities
using NCA
using NCAUtilities

In addition, libraries below are good add-on’s that provide ancillary functionality:

using GLM: lm, @formula
using Random
using CSV
using DataFramesMeta
using CairoMakie
using PharmaDatasets

2.2 Data Wrangling

We start by reading in the dataset and making some quick summaries.

Tip

If you want to learn more about data wrangling, don’t forget to check our Data Wrangling in Julia tutorials!

pkpain_df = dataset("pk_painrelief")
first(pkpain_df, 5)
5×7 DataFrame
Row Subject Time Conc PainRelief PainScore RemedStatus Dose
Int64 Float64 Float64 Int64 Int64 Int64 String7
1 1 0.0 0.0 0 3 1 20 mg
2 1 0.5 1.15578 1 1 0 20 mg
3 1 1.0 1.37211 1 0 0 20 mg
4 1 1.5 1.30058 1 0 0 20 mg
5 1 2.0 1.19195 1 1 0 20 mg

Let’s filter out the placebo data as we don’t need that for the PK analysis.

pkpain_noplb_df = @rsubset pkpain_df :Dose != "Placebo";
first(pkpain_noplb_df, 5)
5×7 DataFrame
Row Subject Time Conc PainRelief PainScore RemedStatus Dose
Int64 Float64 Float64 Int64 Int64 Int64 String7
1 1 0.0 0.0 0 3 1 20 mg
2 1 0.5 1.15578 1 1 0 20 mg
3 1 1.0 1.37211 1 0 0 20 mg
4 1 1.5 1.30058 1 0 0 20 mg
5 1 2.0 1.19195 1 1 0 20 mg

3 Analysis

3.1 Non-compartmental analysis

Let’s begin by performing a quick NCA of the concentration time profiles and view the exposure changes across doses. The input data specification for NCA analysis requires the presence of a :route column and an :amt column that specifies the dose. So, let’s add that in:

@rtransform! pkpain_noplb_df begin
    :route = "ev"
    :Dose = parse(Int, chop(:Dose; tail = 3))
end

We also need to create an :amt column:

@rtransform! pkpain_noplb_df :amt = :Time == 0 ? :Dose : missing

Now, we map the data variables to the read_nca function that prepares the data for NCA analysis.

pkpain_nca = read_nca(
    pkpain_noplb_df;
    id = :Subject,
    time = :Time,
    amt = :amt,
    observations = :Conc,
    group = [:Dose],
    route = :route,
)
NCAPopulation (120 subjects):
  Group: [["Dose" => 5], ["Dose" => 20], ["Dose" => 80]]
  Number of missing observations: 0
  Number of blq observations: 0

Now that we mapped the data in, let’s visualize the concentration vs time plots for a few individuals. When paginate is set to true, a vector of plots are returned and below we display the first element with 9 individuals.

f = observations_vs_time(
    pkpain_nca;
    paginate = true,
    axis = (; xlabel = "Time (hr)", ylabel = "CTMNoPain Concentration (ng/mL)"),
    facet = (; combinelabels = true),
)
f[1]

An observations versus time profile for all subjects

Observations versus Time

or you can view the summary curves by dose group as passed in to the group argument in read_nca

summary_observations_vs_time(
    pkpain_nca,
    figure = (; fontsize = 22, size = (800, 1000)),
    color = "black",
    linewidth = 3,
    axis = (; xlabel = "Time (hr)", ylabel = "CTMX Concentration (μg/mL)"),
    facet = (; combinelabels = true, linkaxes = true),
)

An observations versus time profile for all subjects in a summarized manner

Summary Observations versus Time

A full NCA Report is now obtained for completeness purposes using the run_nca function, but later we will only extract a couple of key metrics of interest.

pk_nca = run_nca(pkpain_nca; sigdigits = 3)

We can look at the NCA fits for some subjects. Here f is a vector or figures. We’ll showcase the first image by indexing f:

f = subject_fits(
    pk_nca,
    paginate = true,
    axis = (; xlabel = "Time (hr)", ylabel = "CTMX Concentration (μg/mL)"),
    facet = (; combinelabels = true, linkaxes = true),
)
f[1]

Trend plot with observations for all individual subjects over time

Subject Fits

As CTMNopain’s effect maybe mainly related to maximum concentration (cmax) or area under the curve (auc), we present some summary statistics using the summarize function from NCA.

strata = [:Dose]
1-element Vector{Symbol}:
 :Dose
params = [:cmax, :aucinf_obs]
2-element Vector{Symbol}:
 :cmax
 :aucinf_obs
output = summarize(pk_nca; stratify_by = strata, parameters = params)
6×10 DataFrame
Row Dose parameters numsamples minimum maximum mean std geomean geostd geomeanCV
Int64 String Int64 Float64 Float64 Float64 Float64 Float64 Float64 Float64
1 5 cmax 40 0.19 0.539 0.356075 0.0884129 0.345104 1.2932 26.1425
2 5 aucinf_obs 40 0.914 3.4 1.5979 0.490197 1.53373 1.32974 29.0868
3 20 cmax 40 0.933 2.7 1.4737 0.361871 1.43408 1.2633 23.6954
4 20 aucinf_obs 40 2.77 14.1 6.377 2.22239 6.02031 1.41363 35.6797
5 80 cmax 40 3.3 8.47 5.787 1.31957 5.64164 1.25757 23.2228
6 80 aucinf_obs 40 13.7 49.1 29.5 8.68984 28.2954 1.34152 30.0258

The statistics printed above are the default, but you can pass in your own statistics using the stats = [] argument to the summarize function.

We can look at a few parameter distribution plots.

parameters_vs_group(
    pk_nca,
    parameter = :cmax,
    axis = (; xlabel = "Dose (mg)", ylabel = "Cₘₐₓ (ng/mL)"),
    figure = (; fontsize = 18),
)

A violin plot for the Cmax distribution for each dose group

Cmax for each Dose Group

Dose normalized PK parameters, cmax and aucinf were essentially dose proportional between for 5 mg, 20 mg and 80 mg doses. You can perform a simple regression to check the impact of dose on cmax:

dp = NCA.DoseLinearityPowerModel(pk_nca, :cmax; level = 0.9)
Dose Linearity Power Model
Variable: cmax
Model: log(cmax) ~ log(α) + β × log(dose)
────────────────────────────────────
   Estimate  low CI 90%  high CI 90%
────────────────────────────────────
β   1.00775     0.97571       1.0398
────────────────────────────────────

Here’s a visualization for the dose linearity using a power model for cmax:

power_model(dp)

A dose linearity power model plot for Cmax

Dose Linearity Plot

We can also visualize a dose proportionality results with respect to a specific endpoint in a NCA Report; for example cmax and aucinf_obs:

dose_vs_dose_normalized(pk_nca, :cmax)

A dose proportionality plot for Cmax

Dose Proportionality Plot
dose_vs_dose_normalized(pk_nca, :aucinf_obs)

A dose proportionality plot for AUC

Dose Proportionality Plot

Based on visual inspection of the concentration time profiles as seen earlier, CTMNopain exhibited monophasic decline, and perhaps a one compartment model best fits the PK data.

3.2 Pharmacokinetic modeling

As seen from the plots above, the concentrations decline monoexponentially. We will evaluate both one and two compartment structural models to assess best fit. Further, different residual error models will also be tested.

We will use the results from NCA to provide us good initial estimates.

3.2.1 Data preparation for modeling

PumasNDF requires the presence of :evid and :cmt columns in the dataset.

@rtransform! pkpain_noplb_df begin
    :evid = :Time == 0 ? 1 : 0
    :cmt = :Time == 0 ? 1 : 2
    :cmt2 = 1 # for zero order absorption
end

Further, observations at time of dosing, i.e., when evid = 1 have to be missing

@rtransform! pkpain_noplb_df :Conc = :evid == 1 ? missing : :Conc

The dataframe will now be converted to a Population using read_pumas. Note that both observations and covariates are required to be an array even if it is one element.

pkpain_noplb = read_pumas(
    pkpain_noplb_df;
    id = :Subject,
    time = :Time,
    amt = :amt,
    observations = [:Conc],
    covariates = [:Dose],
    evid = :evid,
    cmt = :cmt,
)
Population
  Subjects: 120
  Covariates: Dose
  Observations: Conc

Now that the data is transformed to a Population of subjects, we can explore different models.

3.2.2 One-compartment model

Note

If you are not familiar yet with the @model blocks and syntax, please check our documentation.

pk_1cmp = @model begin

    @metadata begin
        desc = "One Compartment Model"
        timeu = u"hr"
    end

    @param begin
        """
        Clearance (L/hr)
        """
        tvcl  RealDomain(; lower = 0, init = 3.2)
        """
        Volume (L)
        """
        tvv  RealDomain(; lower = 0, init = 16.4)
        """
        Absorption rate constant (h-1)
        """
        tvka  RealDomain(; lower = 0, init = 3.8)
        """
          - ΩCL
          - ΩVc
          - ΩKa
        """
        Ω  PDiagDomain(init = [0.04, 0.04, 0.04])
        """
        Proportional RUV
        """
        σ_p  RealDomain(; lower = 0.0001, init = 0.2)
    end

    @random begin
        η ~ MvNormal(Ω)
    end

    @covariates begin
        """
        Dose (mg)
        """
        Dose
    end

    @pre begin
        CL = tvcl * exp(η[1])
        Vc = tvv * exp(η[2])
        Ka = tvka * exp(η[3])
    end

    @dynamics Depots1Central1

    @derived begin
        cp := @. Central / Vc
        """
        CTMx Concentration (ng/mL)
        """
        Conc ~ @. Normal(cp, abs(cp) * σ_p)
    end

end
┌ Warning: Covariate Dose is not used in the model.
└ @ Pumas ~/run/_work/PumasTutorials.jl/PumasTutorials.jl/custom_julia_depot/packages/Pumas/aZRyj/src/dsl/model_macro.jl:2856
PumasModel
  Parameters: tvcl, tvv, tvka, Ω, σ_p
  Random effects: η
  Covariates: Dose
  Dynamical system variables: Depot, Central
  Dynamical system type: Closed form
  Derived: Conc
  Observed: Conc
Tip

Note that the local assignment := can be used to define intermediate statements that will not be carried outside of the block. This means that all the resulting data workflows from this model will not contain the intermediate variables defined with :=. We use this when we want to suppress the variable from any further output.

The idea behind := is for performance reasons. If you are not carrying the variable defined with := outside of the block, then it is not necessary to store it in the resulting data structures. Not only will your model run faster, but the resulting data structures will also be smaller.

Before going to fit the model, let’s evaluate some helpful steps via simulation to check appropriateness of data and model

# zero out the random effects
etas = zero_randeffs(pk_1cmp, init_params(pk_1cmp), pkpain_noplb)

Above, we are generating a vector of η’s of the same length as the number of subjects to zero out the random effects. We do this as we are evaluating the trajectories of the concentrations at the initial set of parameters at a population level. Other helper functions here are sample_randeffs and init_randeffs. Please refer to the documentation.

simpk_iparams = simobs(pk_1cmp, pkpain_noplb, init_params(pk_1cmp), etas)
Simulated population (Vector{<:Subject})
  Simulated subjects: 120
  Simulated variables: Conc
sim_plot(
    pk_1cmp,
    simpk_iparams;
    observations = [:Conc],
    figure = (; fontsize = 18),
    axis = (;
        xlabel = "Time (hr)",
        ylabel = "Observed/Predicted \n CTMx Concentration (ng/mL)",
    ),
)

A simulated observations versus time plot overlaid with the scatter plot of the observed observations

Simulated Observations Plot

Our NCA based initial guess on the parameters seem to work well.

Lets change the initial estimate of a couple of the parameters to evaluate the sensitivity.

pkparam = (; init_params(pk_1cmp)..., tvka = 2, tvv = 10)
(tvcl = 3.2,
 tvv = 10,
 tvka = 2,
 Ω = [0.04 0.0 0.0; 0.0 0.04 0.0; 0.0 0.0 0.04],
 σ_p = 0.2,)
simpk_changedpars = simobs(pk_1cmp, pkpain_noplb, pkparam, etas)
Simulated population (Vector{<:Subject})
  Simulated subjects: 120
  Simulated variables: Conc
sim_plot(
    pk_1cmp,
    simpk_changedpars;
    observations = [:Conc],
    figure = (; fontsize = 18),
    axis = (
        xlabel = "Time (hr)",
        ylabel = "Observed/Predicted \n CTMx Concentration (ng/mL)",
    ),
)

A simulated observations versus time plot overlaid with the scatter plot of the observed observations

Simulated Observations Plot

Changing the tvka and decreasing the tvv seemed to make an impact and observations go through the simulated lines.

To get a quick ballpark estimate of your PK parameters, we can do a NaivePooled analysis.

3.2.2.1 NaivePooled
pkfit_np = fit(pk_1cmp, pkpain_noplb, init_params(pk_1cmp), NaivePooled(); omegas = (:Ω,))
[ Info: Checking the initial parameter values.
[ Info: The initial negative log likelihood and its gradient are finite. Check passed.
Iter     Function value   Gradient norm 
     0     7.744356e+02     3.715711e+03
 * time: 0.024767160415649414
     1     2.343899e+02     1.747348e+03
 * time: 0.8609800338745117
     2     9.696232e+01     1.198088e+03
 * time: 0.8638792037963867
     3    -7.818699e+01     5.538151e+02
 * time: 0.8661110401153564
     4    -1.234803e+02     2.462514e+02
 * time: 0.8687350749969482
     5    -1.372888e+02     2.067458e+02
 * time: 0.8711390495300293
     6    -1.410579e+02     1.162950e+02
 * time: 0.8735032081604004
     7    -1.434754e+02     5.632816e+01
 * time: 0.8761460781097412
     8    -1.453401e+02     7.859270e+01
 * time: 0.8787841796875
     9    -1.498185e+02     1.455606e+02
 * time: 0.8812761306762695
    10    -1.534371e+02     1.303682e+02
 * time: 0.883613109588623
    11    -1.563557e+02     5.975474e+01
 * time: 0.8858611583709717
    12    -1.575052e+02     9.308611e+00
 * time: 0.8879201412200928
    13    -1.579357e+02     1.234484e+01
 * time: 0.8903341293334961
    14    -1.581874e+02     7.478196e+00
 * time: 0.8921821117401123
    15    -1.582981e+02     2.027162e+00
 * time: 0.8944389820098877
    16    -1.583375e+02     5.578262e+00
 * time: 0.8962001800537109
    17    -1.583556e+02     4.727050e+00
 * time: 0.8984131813049316
    18    -1.583644e+02     2.340173e+00
 * time: 0.9006831645965576
    19    -1.583680e+02     7.738100e-01
 * time: 0.9024100303649902
    20    -1.583696e+02     3.300689e-01
 * time: 0.9047331809997559
    21    -1.583704e+02     3.641985e-01
 * time: 0.906508207321167
    22    -1.583707e+02     4.365901e-01
 * time: 0.908811092376709
    23    -1.583709e+02     3.887800e-01
 * time: 0.9106271266937256
    24    -1.583710e+02     2.766977e-01
 * time: 0.9129171371459961
    25    -1.583710e+02     1.758029e-01
 * time: 0.9152061939239502
    26    -1.583710e+02     1.133947e-01
 * time: 0.9169390201568604
    27    -1.583710e+02     7.922544e-02
 * time: 0.9192841053009033
    28    -1.583710e+02     5.954998e-02
 * time: 0.9210011959075928
    29    -1.583710e+02     4.157079e-02
 * time: 0.9232480525970459
    30    -1.583710e+02     4.295447e-02
 * time: 0.9254801273345947
    31    -1.583710e+02     5.170753e-02
 * time: 0.9272100925445557
    32    -1.583710e+02     2.644383e-02
 * time: 0.9301230907440186
    33    -1.583710e+02     4.548993e-03
 * time: 0.932481050491333
    34    -1.583710e+02     2.501804e-02
 * time: 0.9355301856994629
    35    -1.583710e+02     3.763440e-02
 * time: 0.9377779960632324
    36    -1.583710e+02     3.206026e-02
 * time: 0.9394772052764893
    37    -1.583710e+02     1.003698e-02
 * time: 0.9418141841888428
    38    -1.583710e+02     2.209089e-02
 * time: 0.9442269802093506
    39    -1.583710e+02     4.954172e-03
 * time: 0.9461190700531006
    40    -1.583710e+02     1.609373e-02
 * time: 0.9491031169891357
    41    -1.583710e+02     1.579802e-02
 * time: 0.9508721828460693
    42    -1.583710e+02     1.014113e-03
 * time: 0.9531991481781006
    43    -1.583710e+02     6.050644e-03
 * time: 0.9561731815338135
    44    -1.583710e+02     1.354412e-02
 * time: 0.9579191207885742
    45    -1.583710e+02     4.473248e-03
 * time: 0.960237979888916
    46    -1.583710e+02     4.644735e-03
 * time: 0.9619970321655273
    47    -1.583710e+02     9.829910e-03
 * time: 0.9643549919128418
    48    -1.583710e+02     1.047561e-03
 * time: 0.966576099395752
    49    -1.583710e+02     8.366895e-03
 * time: 0.9683160781860352
    50    -1.583710e+02     7.879055e-04
 * time: 0.9706981182098389
FittedPumasModel

Successful minimization:                      true

Likelihood approximation:              NaivePooled
Likelihood Optimizer:                         BFGS
Dynamical system type:                 Closed form

Log-likelihood value:                    158.37103
Number of subjects:                            120
Number of parameters:         Fixed      Optimized
                                  1              6
Observation records:         Active        Missing
    Conc:                      1320              0
    Total:                     1320              0

------------------
         Estimate
------------------
tvcl      3.0054
tvv      14.089
tvka     44.228
Ω₁,₁      0.0
Ω₂,₂      0.0
Ω₃,₃      0.0
σ_p       0.32999
------------------
coefficients_table(pkfit_np)
7×3 DataFrame
Row Parameter Description Estimate
String Abstract… Float64
1 tvcl Clearance (L/hr)\n 3.005
2 tvv Volume (L)\n 14.089
3 tvka Absorption rate constant (h-1)\n 44.228
4 Ω₁,₁ ΩCL 0.0
5 Ω₂,₂ ΩVc 0.0
6 Ω₃,₃ ΩKa 0.0
7 σ_p Proportional RUV\n 0.33

The final estimates from the NaivePooled approach seem reasonably close to our initial guess from NCA, except for the tvka parameter. We will stick with our initial guess.

One way to be cautious before going into a complete fitting routine is to evaluate the likelihood of the individual subjects given the initial parameter values and see if any subject(s) pops out as unreasonable. There are a few ways of doing this:

  • check the loglikelihood subject wise
  • check if there any influential subjects

Below, we are basically checking if the initial estimates for any subject are way off that we are unable to compute the initial loglikelihood.

lls = []
for subj in pkpain_noplb
    push!(lls, loglikelihood(pk_1cmp, subj, pkparam, FOCE()))
end
# the plot below is using native CairoMakie `hist`
hist(lls; bins = 10, normalization = :none, color = (:black, 0.5))

A histogram of the individual loglikelihoods

Histogram of Loglikelihoods

The distribution of the loglikelihood’s suggest no extreme outliers.

A more convenient way is to use the findinfluential function that provides a list of k top influential subjects by showing the normalized (minus) loglikelihood for each subject. As you can see below, the minus loglikelihood in the range of 16 agrees with the histogram plotted above.

influential_subjects = findinfluential(pk_1cmp, pkpain_noplb, pkparam, FOCE())
120-element Vector{@NamedTuple{id::String, nll::Float64}}:
 (id = "148", nll = 16.65965885684477)
 (id = "135", nll = 16.648985190076335)
 (id = "156", nll = 15.959069556607496)
 (id = "159", nll = 15.441218240496484)
 (id = "149", nll = 14.71513464411951)
 (id = "88", nll = 13.09709837464614)
 (id = "16", nll = 12.98228052193144)
 (id = "61", nll = 12.652182902303679)
 (id = "71", nll = 12.500330088085505)
 (id = "59", nll = 12.241510254805235)
 ⋮
 (id = "57", nll = -22.79767423253431)
 (id = "93", nll = -22.836900711478208)
 (id = "12", nll = -23.007742339519247)
 (id = "123", nll = -23.292751843079234)
 (id = "41", nll = -23.425412534960515)
 (id = "99", nll = -23.535214841901112)
 (id = "29", nll = -24.025959868383083)
 (id = "52", nll = -24.164757842493685)
 (id = "24", nll = -25.57209232565845)
3.2.2.2 FOCE

Now that we have a good handle on our data, lets go ahead and fit a population model with FOCE:

pkfit_1cmp = fit(pk_1cmp, pkpain_noplb, pkparam, FOCE(); constantcoef = (; tvka = 2))
[ Info: Checking the initial parameter values.
[ Info: The initial negative log likelihood and its gradient are finite. Check passed.
Iter     Function value   Gradient norm 
     0    -5.935351e+02     5.597318e+02
 * time: 6.318092346191406e-5
     1    -7.022088e+02     1.707063e+02
 * time: 0.2911660671234131
     2    -7.314067e+02     2.903269e+02
 * time: 0.4536252021789551
     3    -8.520591e+02     2.285888e+02
 * time: 0.609976053237915
     4    -1.120191e+03     3.795410e+02
 * time: 0.9874510765075684
     5    -1.178784e+03     2.323978e+02
 * time: 1.1393101215362549
     6    -1.218320e+03     9.699907e+01
 * time: 1.3297491073608398
     7    -1.223641e+03     5.862105e+01
 * time: 1.452510118484497
     8    -1.227620e+03     1.831403e+01
 * time: 1.5801920890808105
     9    -1.228381e+03     2.132323e+01
 * time: 1.708693027496338
    10    -1.230098e+03     2.921228e+01
 * time: 1.8575990200042725
    11    -1.230854e+03     2.029662e+01
 * time: 1.9839379787445068
    12    -1.231116e+03     5.229097e+00
 * time: 2.1377670764923096
    13    -1.231179e+03     1.689232e+00
 * time: 2.3081750869750977
    14    -1.231187e+03     1.215379e+00
 * time: 2.432142972946167
    15    -1.231188e+03     2.770380e-01
 * time: 2.542647123336792
    16    -1.231188e+03     1.636653e-01
 * time: 2.6455509662628174
    17    -1.231188e+03     2.701133e-01
 * time: 2.7702670097351074
    18    -1.231188e+03     3.163363e-01
 * time: 2.862377166748047
    19    -1.231188e+03     1.505149e-01
 * time: 2.9520931243896484
    20    -1.231188e+03     2.484999e-02
 * time: 3.0393831729888916
    21    -1.231188e+03     8.446863e-04
 * time: 3.1454319953918457
FittedPumasModel

Successful minimization:                      true

Likelihood approximation:                     FOCE
Likelihood Optimizer:                         BFGS
Dynamical system type:                 Closed form

Log-likelihood value:                     1231.188
Number of subjects:                            120
Number of parameters:         Fixed      Optimized
                                  1              6
Observation records:         Active        Missing
    Conc:                      1320              0
    Total:                     1320              0

-------------------
         Estimate
-------------------
tvcl      3.1642
tvv      13.288
tvka      2.0
Ω₁,₁      0.08494
Ω₂,₂      0.048568
Ω₃,₃      5.5811
σ_p       0.10093
-------------------
infer(pkfit_1cmp)
[ Info: Calculating: variance-covariance matrix.
[ Info: Done.
Asymptotic inference results using sandwich estimator

Successful minimization:                      true

Likelihood approximation:                     FOCE
Likelihood Optimizer:                         BFGS
Dynamical system type:                 Closed form

Log-likelihood value:                     1231.188
Number of subjects:                            120
Number of parameters:         Fixed      Optimized
                                  1              6
Observation records:         Active        Missing
    Conc:                      1320              0
    Total:                     1320              0

-------------------------------------------------------------------
        Estimate           SE                     95.0% C.I.
-------------------------------------------------------------------
tvcl     3.1642          0.08662          [ 2.9944  ;  3.334   ]
tvv     13.288           0.27481          [12.749   ; 13.827   ]
tvka     2.0             NaN              [  NaN    ;   NaN      ]
Ω₁,₁     0.08494         0.011022         [ 0.063338;  0.10654 ]
Ω₂,₂     0.048568        0.0063502        [ 0.036122;  0.061014]
Ω₃,₃     5.5811          1.2188           [ 3.1922  ;  7.97    ]
σ_p      0.10093         0.0057196        [ 0.089718;  0.11214 ]
-------------------------------------------------------------------

Notice that tvka is fixed to 2 as we don’t have a lot of information before tmax. From the results above, we see that the parameter precision for this model is reasonable.

3.2.3 Two-compartment model

Just to be sure, let’s fit a 2-compartment model and evaluate:

pk_2cmp = @model begin

    @param begin
        """
        Clearance (L/hr)
        """
        tvcl  RealDomain(; lower = 0, init = 3.2)
        """
        Central Volume (L)
        """
        tvv  RealDomain(; lower = 0, init = 16.4)
        """
        Peripheral Volume (L)
        """
        tvvp  RealDomain(; lower = 0, init = 10)
        """
        Distributional Clearance (L/hr)
        """
        tvq  RealDomain(; lower = 0, init = 2)
        """
        Absorption rate constant (h-1)
        """
        tvka  RealDomain(; lower = 0, init = 1.3)
        """
          - ΩCL
          - ΩVc
          - ΩKa
          - ΩVp
          - ΩQ
        """
        Ω  PDiagDomain(init = [0.04, 0.04, 0.04, 0.04, 0.04])
        """
        Proportional RUV
        """
        σ_p  RealDomain(; lower = 0.0001, init = 0.2)
    end

    @random begin
        η ~ MvNormal(Ω)
    end

    @covariates begin
        """
        Dose (mg)
        """
        Dose
    end

    @pre begin
        CL = tvcl * exp(η[1])
        Vc = tvv * exp(η[2])
        Ka = tvka * exp(η[3])
        Vp = tvvp * exp(η[4])
        Q = tvq * exp(η[5])
    end

    @dynamics Depots1Central1Periph1

    @derived begin
        cp := @. Central / Vc
        """
        CTMx Concentration (ng/mL)
        """
        Conc ~ @. Normal(cp, cp * σ_p)
    end
end
┌ Warning: Covariate Dose is not used in the model.
└ @ Pumas ~/run/_work/PumasTutorials.jl/PumasTutorials.jl/custom_julia_depot/packages/Pumas/aZRyj/src/dsl/model_macro.jl:2856
PumasModel
  Parameters: tvcl, tvv, tvvp, tvq, tvka, Ω, σ_p
  Random effects: η
  Covariates: Dose
  Dynamical system variables: Depot, Central, Peripheral
  Dynamical system type: Closed form
  Derived: Conc
  Observed: Conc
3.2.3.1 FOCE
pkfit_2cmp =
    fit(pk_2cmp, pkpain_noplb, init_params(pk_2cmp), FOCE(); constantcoef = (; tvka = 2))
[ Info: Checking the initial parameter values.
[ Info: The initial negative log likelihood and its gradient are finite. Check passed.
Iter     Function value   Gradient norm 
     0    -6.302369e+02     1.021050e+03
 * time: 7.390975952148438e-5
     1    -9.197817e+02     9.927951e+02
 * time: 0.28101396560668945
     2    -1.372640e+03     2.054986e+02
 * time: 0.5808839797973633
     3    -1.446326e+03     1.543987e+02
 * time: 0.8994128704071045
     4    -1.545570e+03     1.855028e+02
 * time: 1.171355962753296
     5    -1.581449e+03     1.713157e+02
 * time: 1.6162738800048828
     6    -1.639433e+03     1.257382e+02
 * time: 1.9116718769073486
     7    -1.695964e+03     7.450539e+01
 * time: 2.1721668243408203
     8    -1.722243e+03     5.961044e+01
 * time: 2.4609179496765137
     9    -1.736883e+03     7.320921e+01
 * time: 2.762345790863037
    10    -1.753547e+03     7.501938e+01
 * time: 3.022596836090088
    11    -1.764053e+03     6.185661e+01
 * time: 3.3250157833099365
    12    -1.778991e+03     4.831033e+01
 * time: 3.662087917327881
    13    -1.791492e+03     4.943278e+01
 * time: 4.002189874649048
    14    -1.799847e+03     2.871410e+01
 * time: 4.3572258949279785
    15    -1.805374e+03     7.520791e+01
 * time: 4.762135982513428
    16    -1.816260e+03     2.990621e+01
 * time: 5.0929179191589355
    17    -1.818252e+03     2.401915e+01
 * time: 5.4055140018463135
    18    -1.822988e+03     2.587225e+01
 * time: 5.717067003250122
    19    -1.824653e+03     1.550517e+01
 * time: 5.969350814819336
    20    -1.826074e+03     1.788927e+01
 * time: 6.251224994659424
    21    -1.826821e+03     1.888389e+01
 * time: 6.516048908233643
    22    -1.827900e+03     1.432840e+01
 * time: 6.797647953033447
    23    -1.828511e+03     9.422041e+00
 * time: 7.093999862670898
    24    -1.828754e+03     5.363442e+00
 * time: 7.37075400352478
    25    -1.828862e+03     4.916159e+00
 * time: 7.6524498462677
    26    -1.829007e+03     4.695755e+00
 * time: 7.949594974517822
    27    -1.829358e+03     1.090249e+01
 * time: 8.220670938491821
    28    -1.829830e+03     1.451325e+01
 * time: 8.522029876708984
    29    -1.830201e+03     1.108715e+01
 * time: 8.828874826431274
    30    -1.830360e+03     2.891223e+00
 * time: 9.097190856933594
    31    -1.830390e+03     1.695557e+00
 * time: 9.576762914657593
    32    -1.830404e+03     1.601712e+00
 * time: 10.05839991569519
    33    -1.830432e+03     2.823385e+00
 * time: 10.373932838439941
    34    -1.830477e+03     4.060617e+00
 * time: 10.721182823181152
    35    -1.830528e+03     5.133499e+00
 * time: 11.046433925628662
    36    -1.830593e+03     2.830970e+00
 * time: 11.394709825515747
    37    -1.830616e+03     3.342835e+00
 * time: 11.726136922836304
    38    -1.830622e+03     3.708884e+00
 * time: 12.01149296760559
    39    -1.830625e+03     2.062934e+00
 * time: 12.29072380065918
    40    -1.830627e+03     1.278569e+00
 * time: 12.56161093711853
    41    -1.830628e+03     1.832895e+00
 * time: 12.800863981246948
    42    -1.830628e+03     3.768840e-01
 * time: 13.065598011016846
    43    -1.830629e+03     3.152895e-01
 * time: 13.292333841323853
    44    -1.830630e+03     4.871060e-01
 * time: 13.564238786697388
    45    -1.830630e+03     3.110627e-01
 * time: 13.843886852264404
    46    -1.830630e+03     2.687758e-02
 * time: 14.067235946655273
    47    -1.830630e+03     4.694018e-03
 * time: 14.304260969161987
    48    -1.830630e+03     8.272969e-03
 * time: 14.48662281036377
    49    -1.830630e+03     8.249151e-03
 * time: 14.748056888580322
    50    -1.830630e+03     8.245562e-03
 * time: 15.0417799949646
    51    -1.830630e+03     8.240030e-03
 * time: 15.371457815170288
    52    -1.830630e+03     8.240030e-03
 * time: 15.729442834854126
    53    -1.830630e+03     8.240030e-03
 * time: 16.083330869674683
FittedPumasModel

Successful minimization:                      true

Likelihood approximation:                     FOCE
Likelihood Optimizer:                         BFGS
Dynamical system type:                 Closed form

Log-likelihood value:                    1830.6304
Number of subjects:                            120
Number of parameters:         Fixed      Optimized
                                  1             10
Observation records:         Active        Missing
    Conc:                      1320              0
    Total:                     1320              0

-------------------
         Estimate
-------------------
tvcl      2.8138
tvv      11.005
tvvp      5.54
tvq       1.5159
tvka      2.0
Ω₁,₁      0.10267
Ω₂,₂      0.060776
Ω₃,₃      1.2012
Ω₄,₄      0.4235
Ω₅,₅      0.24473
σ_p       0.048405
-------------------

3.3 Comparing One- versus Two-compartment models

The 2-compartment model has a much lower objective function compared to the 1-compartment. Let’s compare the estimates from the 2 models using the compare_estimates function.

compare_estimates(; pkfit_1cmp, pkfit_2cmp)
11×3 DataFrame
Row parameter pkfit_1cmp pkfit_2cmp
String Float64? Float64?
1 tvcl 3.1642 2.81378
2 tvv 13.288 11.0046
3 tvka 2.0 2.0
4 Ω₁,₁ 0.0849405 0.102669
5 Ω₂,₂ 0.0485682 0.0607757
6 Ω₃,₃ 5.58107 1.20115
7 σ_p 0.100928 0.0484049
8 tvvp missing 5.53998
9 tvq missing 1.51591
10 Ω₄,₄ missing 0.423495
11 Ω₅,₅ missing 0.244731

We perform a likelihood ratio test to compare the two nested models. The test statistic and the \(p\)-value clearly indicate that a 2-compartment model should be preferred.

lrtest(pkfit_1cmp, pkfit_2cmp)
Statistic:          1200.0
Degrees of freedom:      4
P-value:               0.0

We should also compare the other metrics and statistics, such ηshrinkage, ϵshrinkage, aic, and bic using the metrics_table function.

@chain metrics_table(pkfit_2cmp) begin
    leftjoin(metrics_table(pkfit_1cmp); on = :Metric, makeunique = true)
    rename!(:Value => :pk2cmp, :Value_1 => :pk1cmp)
end
20×3 DataFrame
Row Metric pk2cmp pk1cmp
String Any Any
1 Successful true true
2 Estimation Time 16.084 3.146
3 Subjects 120 120
4 Fixed Parameters 1 1
5 Optimized Parameters 10 6
6 Conc Active Observations 1320 1320
7 Conc Missing Observations 0 0
8 Total Active Observations 1320 1320
9 Total Missing Observations 0 0
10 Likelihood Approximation Pumas.FOCE{Optim.NewtonTrustRegion{Float64}, Optim.Options{Float64, Nothing}} Pumas.FOCE{Optim.NewtonTrustRegion{Float64}, Optim.Options{Float64, Nothing}}
11 LogLikelihood (LL) 1830.63 1231.19
12 -2LL -3661.26 -2462.38
13 AIC -3641.26 -2450.38
14 BIC -3589.41 -2419.26
15 (η-shrinkage) η₁ 0.037 0.016
16 (η-shrinkage) η₂ 0.047 0.04
17 (η-shrinkage) η₃ 0.516 0.733
18 (ϵ-shrinkage) Conc 0.185 0.105
19 (η-shrinkage) η₄ 0.287 missing
20 (η-shrinkage) η₅ 0.154 missing

We next generate some goodness of fit plots to compare which model is performing better. To do this, we first inspect the diagnostics of our model fit.

res_inspect_1cmp = inspect(pkfit_1cmp)
[ Info: Calculating predictions.
[ Info: Calculating weighted residuals.
[ Info: Calculating empirical bayes.
[ Info: Evaluating individual parameters.
[ Info: Evaluating dose control parameters.
[ Info: Done.
FittedPumasModelInspection

Fitting was successful: true
Likehood approximation used for weighted residuals : Pumas.FOCE{Optim.NewtonTrustRegion{Float64}, Optim.Options{Float64, Nothing}}(Optim.NewtonTrustRegion{Float64}(1.0, 100.0, 1.4901161193847656e-8, 0.1, 0.25, 0.75, false), Optim.Options(x_abstol = 0.0, x_reltol = 0.0, f_abstol = 0.0, f_reltol = 0.0, g_abstol = 1.0e-5, g_reltol = 1.0e-8, outer_x_abstol = 0.0, outer_x_reltol = 0.0, outer_f_abstol = 0.0, outer_f_reltol = 0.0, outer_g_abstol = 1.0e-8, outer_g_reltol = 1.0e-8, f_calls_limit = 0, g_calls_limit = 0, h_calls_limit = 0, allow_f_increases = false, allow_outer_f_increases = true, successive_f_tol = 1, iterations = 1000, outer_iterations = 1000, store_trace = false, trace_simplex = false, show_trace = false, extended_trace = false, show_warnings = true, show_every = 1, time_limit = NaN, )
)
res_inspect_2cmp = inspect(pkfit_2cmp)
[ Info: Calculating predictions.
[ Info: Calculating weighted residuals.
[ Info: Calculating empirical bayes.
[ Info: Evaluating individual parameters.
[ Info: Evaluating dose control parameters.
[ Info: Done.
FittedPumasModelInspection

Fitting was successful: true
Likehood approximation used for weighted residuals : Pumas.FOCE{Optim.NewtonTrustRegion{Float64}, Optim.Options{Float64, Nothing}}(Optim.NewtonTrustRegion{Float64}(1.0, 100.0, 1.4901161193847656e-8, 0.1, 0.25, 0.75, false), Optim.Options(x_abstol = 0.0, x_reltol = 0.0, f_abstol = 0.0, f_reltol = 0.0, g_abstol = 1.0e-5, g_reltol = 1.0e-8, outer_x_abstol = 0.0, outer_x_reltol = 0.0, outer_f_abstol = 0.0, outer_f_reltol = 0.0, outer_g_abstol = 1.0e-8, outer_g_reltol = 1.0e-8, f_calls_limit = 0, g_calls_limit = 0, h_calls_limit = 0, allow_f_increases = false, allow_outer_f_increases = true, successive_f_tol = 1, iterations = 1000, outer_iterations = 1000, store_trace = false, trace_simplex = false, show_trace = false, extended_trace = false, show_warnings = true, show_every = 1, time_limit = NaN, )
)
gof_1cmp = goodness_of_fit(res_inspect_1cmp; figure = (; fontsize = 12))

A 4-mosaic goodness of fit plot showing the 1-compartment model

Goodness of Fit Plots
gof_2cmp = goodness_of_fit(res_inspect_2cmp; figure = (; fontsize = 12))

Trend plot with observations for all individual subjects over time

Subject Fits

These plots clearly indicate that the 2-compartment model is a better fit compared to the 1-compartment model.

We can look at selected sample of individual plots.

fig_subject_fits = subject_fits(
    res_inspect_2cmp;
    separate = true,
    paginate = true,
    facet = (; combinelabels = true),
    figure = (; fontsize = 18),
    axis = (; xlabel = "Time (hr)", ylabel = "CTMx Concentration (ng/mL)"),
)
fig_subject_fits[1]

Trend plot with observations for 4 individual subjects over time

Subject Fits for 4 Individuals

There a lot of important plotting functions you can use for your standard model diagnostics. Please make sure to read the documentation for plotting. Below, we are checking the distribution of the empirical Bayes estimates.

empirical_bayes_dist(res_inspect_2cmp; zeroline_color = :red)

A histogram for the empirical Bayes distribution of all subject-specific parameters

Empirical Bayes Distribution
empirical_bayes_vs_covariates(
    res_inspect_2cmp;
    categorical = [:Dose],
    figure = (; size = (600, 800)),
)

A histogram for the empirical Bayes distribution of all subject-specific parameters stratified by categorical covariates

Empirical Bayes Distribution Stratified by Covariates

Clearly, our guess at tvka seems off-target. Let’s try and estimate tvka instead of fixing it to 2:

pkfit_2cmp_unfix_ka = fit(pk_2cmp, pkpain_noplb, init_params(pk_2cmp), FOCE())
[ Info: Checking the initial parameter values.
[ Info: The initial negative log likelihood and its gradient are finite. Check passed.
Iter     Function value   Gradient norm 
     0    -3.200734e+02     1.272671e+03
 * time: 8.296966552734375e-5
     1    -8.682982e+02     1.000199e+03
 * time: 0.3516368865966797
     2    -1.381870e+03     5.008081e+02
 * time: 0.6976919174194336
     3    -1.551053e+03     6.833490e+02
 * time: 1.0851240158081055
     4    -1.680887e+03     1.834586e+02
 * time: 1.3713510036468506
     5    -1.726118e+03     8.870274e+01
 * time: 1.7111878395080566
     6    -1.761023e+03     1.162036e+02
 * time: 2.0172178745269775
     7    -1.786619e+03     1.114552e+02
 * time: 2.3584039211273193
     8    -1.863556e+03     9.914305e+01
 * time: 2.688314914703369
     9    -1.882942e+03     5.342676e+01
 * time: 3.038245916366577
    10    -1.888020e+03     2.010181e+01
 * time: 3.403244972229004
    11    -1.889832e+03     1.867263e+01
 * time: 3.7195088863372803
    12    -1.891649e+03     1.668512e+01
 * time: 4.078242063522339
    13    -1.892615e+03     1.820701e+01
 * time: 4.398313999176025
    14    -1.893453e+03     1.745195e+01
 * time: 4.741631031036377
    15    -1.894760e+03     1.850174e+01
 * time: 5.061720848083496
    16    -1.895647e+03     1.773939e+01
 * time: 5.399042844772339
    17    -1.896597e+03     1.143462e+01
 * time: 5.762431859970093
    18    -1.897114e+03     9.720097e+00
 * time: 6.065305948257446
    19    -1.897373e+03     6.054321e+00
 * time: 6.41254186630249
    20    -1.897498e+03     3.985954e+00
 * time: 6.727407932281494
    21    -1.897571e+03     4.262464e+00
 * time: 7.0630738735198975
    22    -1.897633e+03     4.010234e+00
 * time: 7.372957944869995
    23    -1.897714e+03     4.805375e+00
 * time: 7.708884000778198
    24    -1.897802e+03     3.508706e+00
 * time: 8.086956024169922
    25    -1.897865e+03     3.691477e+00
 * time: 8.379258871078491
    26    -1.897900e+03     2.982720e+00
 * time: 8.713791847229004
    27    -1.897928e+03     2.563790e+00
 * time: 9.012503862380981
    28    -1.897968e+03     3.261485e+00
 * time: 9.343833923339844
    29    -1.898013e+03     3.064690e+00
 * time: 9.640743017196655
    30    -1.898040e+03     1.636525e+00
 * time: 9.96767783164978
    31    -1.898051e+03     1.439997e+00
 * time: 10.278594017028809
    32    -1.898057e+03     1.436504e+00
 * time: 10.59801197052002
    33    -1.898069e+03     1.881529e+00
 * time: 10.936486959457397
    34    -1.898095e+03     3.253165e+00
 * time: 11.224890947341919
    35    -1.898142e+03     4.257942e+00
 * time: 11.564955949783325
    36    -1.898199e+03     3.685241e+00
 * time: 11.869658946990967
    37    -1.898245e+03     2.567364e+00
 * time: 12.213368892669678
    38    -1.898246e+03     2.561591e+00
 * time: 12.715200901031494
    39    -1.898251e+03     2.530888e+00
 * time: 13.108697891235352
    40    -1.898298e+03     2.673696e+00
 * time: 13.453145027160645
    41    -1.898300e+03     2.794639e+00
 * time: 13.888885974884033
    42    -1.898337e+03     3.751590e+00
 * time: 14.30534291267395
    43    -1.898421e+03     4.878407e+00
 * time: 14.6543869972229
    44    -1.898433e+03     4.391719e+00
 * time: 15.042754888534546
    45    -1.898437e+03     4.216518e+00
 * time: 15.531946897506714
    46    -1.898442e+03     4.108397e+00
 * time: 16.035634994506836
    47    -1.898446e+03     3.934902e+00
 * time: 16.539177894592285
    48    -1.898449e+03     3.769838e+00
 * time: 17.043819904327393
    49    -1.898450e+03     3.739486e+00
 * time: 17.480304956436157
    50    -1.898450e+03     3.712049e+00
 * time: 17.99446988105774
    51    -1.898457e+03     3.623436e+00
 * time: 18.428550004959106
    52    -1.898471e+03     2.668312e+00
 * time: 18.744637966156006
    53    -1.898479e+03     2.302438e+00
 * time: 19.086650848388672
    54    -1.898480e+03     2.386566e-01
 * time: 19.396994829177856
    55    -1.898480e+03     7.802040e-01
 * time: 19.720026969909668
    56    -1.898480e+03     7.369786e-01
 * time: 20.181758880615234
    57    -1.898480e+03     5.113191e-01
 * time: 20.55393695831299
    58    -1.898480e+03     3.067709e-01
 * time: 20.868165969848633
    59    -1.898480e+03     3.076791e-01
 * time: 21.207254886627197
    60    -1.898480e+03     3.102066e-01
 * time: 21.47196102142334
    61    -1.898480e+03     3.102066e-01
 * time: 21.881314039230347
    62    -1.898480e+03     3.102069e-01
 * time: 22.356987953186035
    63    -1.898480e+03     3.102071e-01
 * time: 23.031436920166016
    64    -1.898480e+03     3.102074e-01
 * time: 23.705273866653442
    65    -1.898480e+03     3.102076e-01
 * time: 24.39507794380188
    66    -1.898480e+03     3.102079e-01
 * time: 25.07362985610962
    67    -1.898480e+03     3.102081e-01
 * time: 25.761672019958496
    68    -1.898480e+03     3.102081e-01
 * time: 26.46256685256958
    69    -1.898480e+03     3.102081e-01
 * time: 27.166467905044556
    70    -1.898480e+03     3.102082e-01
 * time: 27.866047859191895
    71    -1.898480e+03     3.102082e-01
 * time: 28.56844997406006
    72    -1.898480e+03     3.102082e-01
 * time: 29.275399923324585
    73    -1.898480e+03     3.102102e-01
 * time: 29.94611096382141
    74    -1.898480e+03     3.102102e-01
 * time: 30.50294303894043
    75    -1.898480e+03     3.102096e-01
 * time: 31.010547876358032
    76    -1.898480e+03     3.102096e-01
 * time: 31.535022974014282
    77    -1.898480e+03     3.125688e-01
 * time: 32.054117918014526
    78    -1.898480e+03     3.125640e-01
 * time: 32.485291957855225
    79    -1.898480e+03     3.125618e-01
 * time: 32.952473878860474
    80    -1.898480e+03     3.125615e-01
 * time: 33.46808195114136
    81    -1.898480e+03     3.125612e-01
 * time: 33.99279189109802
    82    -1.898480e+03     3.125610e-01
 * time: 34.47139883041382
    83    -1.898480e+03     3.125609e-01
 * time: 35.0406060218811
    84    -1.898480e+03     3.125604e-01
 * time: 35.54052495956421
    85    -1.898480e+03     3.125602e-01
 * time: 36.038084983825684
    86    -1.898480e+03     3.125602e-01
 * time: 36.58007884025574
    87    -1.898480e+03     3.125602e-01
 * time: 37.2889039516449
    88    -1.898480e+03     3.125602e-01
 * time: 38.0173180103302
    89    -1.898480e+03     3.125602e-01
 * time: 38.768173933029175
    90    -1.898480e+03     3.125602e-01
 * time: 39.49185800552368
    91    -1.898480e+03     3.125602e-01
 * time: 40.23722696304321
    92    -1.898480e+03     3.125602e-01
 * time: 40.75749206542969
    93    -1.898480e+03     3.125602e-01
 * time: 41.25179100036621
    94    -1.898480e+03     3.125602e-01
 * time: 41.751808881759644
    95    -1.898480e+03     1.387453e-01
 * time: 42.123191833496094
    96    -1.898480e+03     1.387453e-01
 * time: 42.564483880996704
    97    -1.898480e+03     1.387453e-01
 * time: 43.05810189247131
    98    -1.898480e+03     1.387453e-01
 * time: 43.64898705482483
    99    -1.898480e+03     1.387453e-01
 * time: 44.03232002258301
FittedPumasModel

Successful minimization:                      true

Likelihood approximation:                     FOCE
Likelihood Optimizer:                         BFGS
Dynamical system type:                 Closed form

Log-likelihood value:                    1898.4797
Number of subjects:                            120
Number of parameters:         Fixed      Optimized
                                  0             11
Observation records:         Active        Missing
    Conc:                      1320              0
    Total:                     1320              0

-------------------
         Estimate
-------------------
tvcl      2.6191
tvv      11.378
tvvp      8.453
tvq       1.3164
tvka      4.8926
Ω₁,₁      0.13243
Ω₂,₂      0.059669
Ω₃,₃      0.41581
Ω₄,₄      0.080679
Ω₅,₅      0.24996
σ_p       0.049097
-------------------
compare_estimates(; pkfit_2cmp, pkfit_2cmp_unfix_ka)
11×3 DataFrame
Row parameter pkfit_2cmp pkfit_2cmp_unfix_ka
String Float64? Float64?
1 tvcl 2.81378 2.6191
2 tvv 11.0046 11.3784
3 tvvp 5.53998 8.45297
4 tvq 1.51591 1.31637
5 tvka 2.0 4.89257
6 Ω₁,₁ 0.102669 0.132432
7 Ω₂,₂ 0.0607757 0.0596693
8 Ω₃,₃ 1.20115 0.415811
9 Ω₄,₄ 0.423495 0.0806789
10 Ω₅,₅ 0.244731 0.249956
11 σ_p 0.0484049 0.0490975

Let’s revaluate the goodness of fits and η distribution plots.

Not much change in the general gof plots

res_inspect_2cmp_unfix_ka = inspect(pkfit_2cmp_unfix_ka)
[ Info: Calculating predictions.
[ Info: Calculating weighted residuals.
[ Info: Calculating empirical bayes.
[ Info: Evaluating individual parameters.
[ Info: Evaluating dose control parameters.
[ Info: Done.
FittedPumasModelInspection

Fitting was successful: true
Likehood approximation used for weighted residuals : Pumas.FOCE{Optim.NewtonTrustRegion{Float64}, Optim.Options{Float64, Nothing}}(Optim.NewtonTrustRegion{Float64}(1.0, 100.0, 1.4901161193847656e-8, 0.1, 0.25, 0.75, false), Optim.Options(x_abstol = 0.0, x_reltol = 0.0, f_abstol = 0.0, f_reltol = 0.0, g_abstol = 1.0e-5, g_reltol = 1.0e-8, outer_x_abstol = 0.0, outer_x_reltol = 0.0, outer_f_abstol = 0.0, outer_f_reltol = 0.0, outer_g_abstol = 1.0e-8, outer_g_reltol = 1.0e-8, f_calls_limit = 0, g_calls_limit = 0, h_calls_limit = 0, allow_f_increases = false, allow_outer_f_increases = true, successive_f_tol = 1, iterations = 1000, outer_iterations = 1000, store_trace = false, trace_simplex = false, show_trace = false, extended_trace = false, show_warnings = true, show_every = 1, time_limit = NaN, )
)
goodness_of_fit(res_inspect_2cmp_unfix_ka; figure = (; fontsize = 12))

A 4-mosaic goodness of fit plot showing the 2-compartment model

Goodness of Fit Plots

But you can see a huge improvement in the ηka, (η₃) distribution which is now centered around zero

empirical_bayes_vs_covariates(
    res_inspect_2cmp_unfix_ka;
    categorical = [:Dose],
    ebes = [:η₃],
    figure = (; size = (600, 800)),
)

A histogram for the empirical Bayes distribution of all subject-specific parameters stratified by categorical covariates

Empirical Bayes Distribution Stratified by Covariates

Finally looking at some individual plots for the same subjects as earlier:

fig_subject_fits2 = subject_fits(
    res_inspect_2cmp_unfix_ka;
    separate = true,
    paginate = true,
    facet = (; combinelabels = true, linkyaxes = false),
    figure = (; fontsize = 18),
    axis = (; xlabel = "Time (hr)", ylabel = "CTMx Concentration (ng/mL)"),
)
fig_subject_fits2[6]

Trend plot with observations for 4 individual subjects over time

Subject Fits for 4 Individuals

The randomly sampled individual fits don’t seem good in some individuals, but we can evaluate this via a vpc to see how to go about.

3.4 Visual Predictive Checks (VPC)

We can now perform a vpc to check. The default plots provide a 80% prediction interval and a 95% simulated CI (shaded area) around each of the quantiles

pk_vpc = vpc(
    pkfit_2cmp_unfix_ka,
    200;
    observations = [:Conc],
    stratify_by = [:Dose],
    ensemblealg = EnsembleThreads(), # multi-threading
)
[ Info: Continuous VPC
Visual Predictive Check
  Type of VPC: Continuous VPC
  Simulated populations: 200
  Subjects in data: 120
  Stratification variable(s): [:Dose]
  Confidence level: 0.95
  VPC lines: quantiles ([0.1, 0.5, 0.9])
vpc_plot(
    pk_2cmp,
    pk_vpc;
    rows = 1,
    columns = 3,
    figure = (; size = (1400, 1000), fontsize = 22),
    axis = (;
        xlabel = "Time (hr)",
        ylabel = "Observed/Predicted\n CTMx Concentration (ng/mL)",
    ),
    facet = (; combinelabels = true),
)

A visual predictive plot stratified by dose group

Visual Predictive Plots

The visual predictive check suggests that the model captures the data well across all dose levels.

4 Additional Help

If you have questions regarding this tutorial, please post them on our discourse site.