A Comprehensive Introduction to Pumas

Authors

Vijay Ivaturi

Jose Storopoli

This tutorial provides a comprehensive introduction to a modeling and simulation workflow in Pumas. The idea is not to get into the details of Pumas specifics, but instead provide a narrative on the lines of a regular workflow in our day-to-day work, with brevity where required to allow a broad overview. Wherever possible, cross-references will be provided to documentation and detailed examples that provide deeper insight into a particular topic.

As part of this workflow, you will be introduced to various aspects such as:

  1. Data wrangling in Julia
  2. Exploratory analysis in Julia
  3. Continuous data non-linear mixed effects modeling in Pumas
  4. Model comparison routines, post-processing, validation etc.

1 The Study and Design

CTMNopain is a novel anti-inflammatory agent under preliminary investigation. A dose-ranging trial was conducted comparing placebo with 3 doses of CTMNopain (5mg, 20mg and 80 mg QD). The maximum tolerated dose is 160 mg per day. Plasma concentrations (mg/L) of the drug were measured at 0, 0.5, 1, 1.5, 2, 2.5, 3-8 hours.

Pain score (0=no pain, 1=mild, 2=moderate, 3=severe) were obtained at time points when plasma concentration was collected. A pain score of 2 or more is considered as no pain relief.

The subjects can request for remedication if pain relief is not achieved after 2 hours post dose. Some subjects had remedication before 2 hours if they were not able to bear the pain. The time to remedication and the remedication status is available for subjects.

The pharmacokinetic dataset can be accessed using PharmaDatasets.jl.

2 Setup

2.1 Load libraries

These libraries provide the workhorse functionality in the Pumas ecosystem:

using Pumas
using PumasUtilities
using NCA
using NCAUtilities

In addition, libraries below are good add-on’s that provide ancillary functionality:

using GLM: lm, @formula
using Random
using CSV
using DataFramesMeta
using CairoMakie
using PharmaDatasets

2.2 Data Wrangling

We start by reading in the dataset and making some quick summaries.

Tip

If you want to learn more about data wrangling, don’t forget to check our Data Wrangling in Julia tutorials!

pkpain_df = dataset("pk_painrelief")
first(pkpain_df, 5)
5×7 DataFrame
Row Subject Time Conc PainRelief PainScore RemedStatus Dose
Int64 Float64 Float64 Int64 Int64 Int64 String7
1 1 0.0 0.0 0 3 1 20 mg
2 1 0.5 1.15578 1 1 0 20 mg
3 1 1.0 1.37211 1 0 0 20 mg
4 1 1.5 1.30058 1 0 0 20 mg
5 1 2.0 1.19195 1 1 0 20 mg

Let’s filter out the placebo data as we don’t need that for the PK analysis.

pkpain_noplb_df = @rsubset pkpain_df :Dose != "Placebo";
first(pkpain_noplb_df, 5)
5×7 DataFrame
Row Subject Time Conc PainRelief PainScore RemedStatus Dose
Int64 Float64 Float64 Int64 Int64 Int64 String7
1 1 0.0 0.0 0 3 1 20 mg
2 1 0.5 1.15578 1 1 0 20 mg
3 1 1.0 1.37211 1 0 0 20 mg
4 1 1.5 1.30058 1 0 0 20 mg
5 1 2.0 1.19195 1 1 0 20 mg

3 Analysis

3.1 Non-compartmental analysis

Let’s begin by performing a quick NCA of the concentration time profiles and view the exposure changes across doses. The input data specification for NCA analysis requires the presence of a :route column and an :amt column that specifies the dose. So, let’s add that in:

@rtransform! pkpain_noplb_df begin
    :route = "ev"
    :Dose = parse(Int, chop(:Dose; tail = 3))
end

We also need to create an :amt column:

@rtransform! pkpain_noplb_df :amt = :Time == 0 ? :Dose : missing

Now, we map the data variables to the read_nca function that prepares the data for NCA analysis.

pkpain_nca = read_nca(
    pkpain_noplb_df;
    id = :Subject,
    time = :Time,
    amt = :amt,
    observations = :Conc,
    group = [:Dose],
    route = :route,
)
NCAPopulation (120 subjects):
  Group: [["Dose" => 5], ["Dose" => 20], ["Dose" => 80]]
  Number of missing observations: 0
  Number of blq observations: 0

Now that we mapped the data in, let’s visualize the concentration vs time plots for a few individuals. When paginate is set to true, a vector of plots are returned and below we display the first element with 9 individuals.

f = observations_vs_time(
    pkpain_nca;
    paginate = true,
    axis = (; xlabel = "Time (hr)", ylabel = "CTMNoPain Concentration (ng/mL)"),
    facet = (; combinelabels = true),
)
f[1]

An observations versus time profile for all subjects

Observations versus Time

or you can view the summary curves by dose group as passed in to the group argument in read_nca

summary_observations_vs_time(
    pkpain_nca,
    figure = (; fontsize = 22, resolution = (800, 1000)),
    color = "black",
    linewidth = 3,
    axis = (; xlabel = "Time (hr)", ylabel = "CTMX Concentration (μg/mL)"),
    facet = (; combinelabels = true, linkaxes = true),
)

An observations versus time profile for all subjects in a summarized manner

Summary Observations versus Time

A full NCA Report is now obtained for completeness purposes using the run_nca function, but later we will only extract a couple of key metrics of interest.

pk_nca = run_nca(pkpain_nca; sigdigits = 3)

We can look at the NCA fits for some subjects. Here f is a vector or figures. We’ll showcase the first image by indexing f:

f = subject_fits(
    pk_nca,
    paginate = true,
    axis = (; xlabel = "Time (hr)", ylabel = "CTMX Concentration (μg/mL)"),
    facet = (; combinelabels = true, linkaxes = true),
)
f[1]

Trend plot with observations for all individual subjects over time

Subject Fits

As CTMNopain’s effect maybe mainly related to maximum concentration (cmax) or area under the curve (auc), we present some summary statistics using the summarize function from NCA.

strata = [:Dose]
1-element Vector{Symbol}:
 :Dose
params = [:cmax, :aucinf_obs]
2-element Vector{Symbol}:
 :cmax
 :aucinf_obs
output = summarize(pk_nca; stratify_by = strata, parameters = params)
6×10 DataFrame
Row Dose parameters numsamples minimum maximum mean std geomean geostd geomeanCV
Int64 String Int64 Float64 Float64 Float64 Float64 Float64 Float64 Float64
1 5 cmax 40 0.19 0.539 0.356075 0.0884129 0.345104 1.2932 26.1425
2 5 aucinf_obs 40 0.914 3.4 1.5979 0.490197 1.53373 1.32974 29.0868
3 20 cmax 40 0.933 2.7 1.4737 0.361871 1.43408 1.2633 23.6954
4 20 aucinf_obs 40 2.77 14.1 6.377 2.22239 6.02031 1.41363 35.6797
5 80 cmax 40 3.3 8.47 5.787 1.31957 5.64164 1.25757 23.2228
6 80 aucinf_obs 40 13.7 49.1 29.5 8.68984 28.2954 1.34152 30.0258

The statistics printed above are the default, but you can pass in your own statistics using the stats = [] argument to the summarize function.

We can look at a few parameter distribution plots.

parameters_vs_group(
    pk_nca,
    parameter = :cmax,
    axis = (; xlabel = "Dose (mg)", ylabel = "Cₘₐₓ (ng/mL)"),
    figure = (; fontsize = 18),
)

A violin plot for the Cmax distribution for each dose group

Cmax for each Dose Group

Dose normalized PK parameters, cmax and aucinf were essentially dose proportional between for 5 mg, 20 mg and 80 mg doses. You can perform a simple regression to check the impact of dose on cmax:

dp = NCA.DoseLinearityPowerModel(pk_nca, :cmax; level = 0.9)
Dose Linearity Power Model
Variable: cmax
Model: log(cmax) ~ log(α) + β × log(dose)
────────────────────────────────────
   Estimate  low CI 90%  high CI 90%
────────────────────────────────────
β   1.00775     0.97571       1.0398
────────────────────────────────────

Here’s a visualization for the dose linearity using a power model for cmax:

power_model(dp)

A dose linearity power model plot for Cmax

Dose Linearity Plot

We can also visualize a dose proportionality results with respect to a specific endpoint in a NCA Report; for example cmax and aucinf_obs:

dose_vs_dose_normalized(pk_nca, :cmax)

A dose proportionality plot for Cmax

Dose Proportionality Plot
dose_vs_dose_normalized(pk_nca, :aucinf_obs)

A dose proportionality plot for AUC

Dose Proportionality Plot

Based on visual inspection of the concentration time profiles as seen earlier, CTMNopain exhibited monophasic decline, and perhaps a one compartment model best fits the PK data.

3.2 Pharmacokinetic modeling

As seen from the plots above, the concentrations decline monoexponentially. We will evaluate both one and two compartment structural models to assess best fit. Further, different residual error models will also be tested.

We will use the results from NCA to provide us good initial estimates.

3.2.1 Data preparation for modeling

PumasNDF requires the presence of :evid and :cmt columns in the dataset.

@rtransform! pkpain_noplb_df begin
    :evid = :Time == 0 ? 1 : 0
    :cmt = :Time == 0 ? 1 : 2
    :cmt2 = 1 # for zero order absorption
end

Further, observations at time of dosing, i.e., when evid = 1 have to be missing

@rtransform! pkpain_noplb_df :Conc = :evid == 1 ? missing : :Conc

The dataframe will now be converted to a Population using read_pumas. Note that both observations and covariates are required to be an array even if it is one element.

pkpain_noplb = read_pumas(
    pkpain_noplb_df;
    id = :Subject,
    time = :Time,
    amt = :amt,
    observations = [:Conc],
    covariates = [:Dose],
    evid = :evid,
    cmt = :cmt,
)
Population
  Subjects: 120
  Covariates: Dose
  Observations: Conc

Now that the data is transformed to a Population of subjects, we can explore different models.

3.2.2 One-compartment model

Note

If you are not familiar yet with the @model blocks and syntax, please check our documentation.

pk_1cmp = @model begin

    @metadata begin
        desc = "One Compartment Model"
        timeu = u"hr"
    end

    @param begin
        """
        Clearance (L/hr)
        """
        tvcl  RealDomain(; lower = 0, init = 3.2)
        """
        Volume (L)
        """
        tvv  RealDomain(; lower = 0, init = 16.4)
        """
        Absorption rate constant (h-1)
        """
        tvka  RealDomain(; lower = 0, init = 3.8)
        """
          - ΩCL
          - ΩVc
          - ΩKa
        """
        Ω  PDiagDomain(init = [0.04, 0.04, 0.04])
        """
        Proportional RUV
        """
        σ_p  RealDomain(; lower = 0.0001, init = 0.2)
    end

    @random begin
        η ~ MvNormal(Ω)
    end

    @covariates begin
        """
        Dose (mg)
        """
        Dose
    end

    @pre begin
        CL = tvcl * exp(η[1])
        Vc = tvv * exp(η[2])
        Ka = tvka * exp(η[3])
    end

    @dynamics Depots1Central1

    @derived begin
        cp := @. Central / Vc
        """
        CTMx Concentration (ng/mL)
        """
        Conc ~ @. Normal(cp, abs(cp) * σ_p)
    end

end
PumasModel
  Parameters: tvcl, tvv, tvka, Ω, σ_p
  Random effects: η
  Covariates: Dose
  Dynamical variables: Depot, Central
  Derived: Conc
  Observed: Conc
Tip

Note that the local assignment := can be used to define intermediate statements that will not be carried outside of the block. This means that all the resulting data workflows from this model will not contain the intermediate variables defined with :=. We use this when we want to suppress the variable from any further output.

The idea behind := is for performance reasons. If you are not carrying the variable defined with := outside of the block, then it is not necessary to store it in the resulting data structures. Not only will your model run faster, but the resulting data structures will also be smaller.

Before going to fit the model, let’s evaluate some helpful steps via simulation to check appropriateness of data and model

# zero out the random effects
etas = zero_randeffs(pk_1cmp, init_params(pk_1cmp), pkpain_noplb)

Above, we are generating a vector of η’s of the same length as the number of subjects to zero out the random effects. We do this as we are evaluating the trajectories of the concentrations at the initial set of parameters at a population level. Other helper functions here are sample_randeffs and init_randeffs. Please refer to the documentation.

simpk_iparams = simobs(pk_1cmp, pkpain_noplb, init_params(pk_1cmp), etas)
Simulated population (Vector{<:Subject})
  Simulated subjects: 120
  Simulated variables: Conc
sim_plot(
    pk_1cmp,
    simpk_iparams;
    observations = [:Conc],
    figure = (; fontsize = 18),
    axis = (;
        xlabel = "Time (hr)",
        ylabel = "Observed/Predicted \n CTMx Concentration (ng/mL)",
    ),
)

A simulated observations versus time plot overlaid with the scatter plot of the observed observations

Simulated Observations Plot

Our NCA based initial guess on the parameters seem to work well.

Lets change the initial estimate of a couple of the parameters to evaluate the sensitivity.

pkparam = (; init_params(pk_1cmp)..., tvka = 2, tvv = 10)
(tvcl = 3.2,
 tvv = 10,
 tvka = 2,
 Ω = [0.04 0.0 0.0; 0.0 0.04 0.0; 0.0 0.0 0.04],
 σ_p = 0.2,)
simpk_changedpars = simobs(pk_1cmp, pkpain_noplb, pkparam, etas)
Simulated population (Vector{<:Subject})
  Simulated subjects: 120
  Simulated variables: Conc
sim_plot(
    pk_1cmp,
    simpk_changedpars;
    observations = [:Conc],
    figure = (; fontsize = 18),
    axis = (
        xlabel = "Time (hr)",
        ylabel = "Observed/Predicted \n CTMx Concentration (ng/mL)",
    ),
)

A simulated observations versus time plot overlaid with the scatter plot of the observed observations

Simulated Observations Plot

Changing the tvka and decreasing the tvv seemed to make an impact and observations go through the simulated lines.

To get a quick ballpark estimate of your PK parameters, we can do a NaivePooled analysis.

3.2.2.1 NaivePooled
pkfit_np = fit(pk_1cmp, pkpain_noplb, init_params(pk_1cmp), NaivePooled(); omegas = (:Ω,))
[ Info: Checking the initial parameter values.
[ Info: The initial negative log likelihood and its gradient are finite. Check passed.
Iter     Function value   Gradient norm 
     0     7.744356e+02     3.715711e+03
 * time: 0.017796039581298828
     1     2.343899e+02     1.747348e+03
 * time: 0.3347740173339844
     2     9.696232e+01     1.198088e+03
 * time: 0.3362419605255127
     3    -7.818699e+01     5.538151e+02
 * time: 0.33734583854675293
     4    -1.234803e+02     2.462514e+02
 * time: 0.33852386474609375
     5    -1.372888e+02     2.067458e+02
 * time: 0.3396739959716797
     6    -1.410579e+02     1.162950e+02
 * time: 0.3807668685913086
     7    -1.434754e+02     5.632816e+01
 * time: 0.3816859722137451
     8    -1.453401e+02     7.859270e+01
 * time: 0.3825080394744873
     9    -1.498185e+02     1.455606e+02
 * time: 0.38326287269592285
    10    -1.534371e+02     1.303682e+02
 * time: 0.3840329647064209
    11    -1.563557e+02     5.975474e+01
 * time: 0.38487982749938965
    12    -1.575052e+02     9.308611e+00
 * time: 0.3857858180999756
    13    -1.579357e+02     1.234484e+01
 * time: 0.38680601119995117
    14    -1.581874e+02     7.478196e+00
 * time: 0.3878359794616699
    15    -1.582981e+02     2.027162e+00
 * time: 0.3888590335845947
    16    -1.583375e+02     5.578262e+00
 * time: 0.3899378776550293
    17    -1.583556e+02     4.727050e+00
 * time: 0.39102888107299805
    18    -1.583644e+02     2.340173e+00
 * time: 0.3921089172363281
    19    -1.583680e+02     7.738100e-01
 * time: 0.3932008743286133
    20    -1.583696e+02     3.300689e-01
 * time: 0.3943350315093994
    21    -1.583704e+02     3.641985e-01
 * time: 0.3954808712005615
    22    -1.583707e+02     4.365901e-01
 * time: 0.3966329097747803
    23    -1.583709e+02     3.887800e-01
 * time: 0.3977530002593994
    24    -1.583710e+02     2.766977e-01
 * time: 0.3990499973297119
    25    -1.583710e+02     1.758029e-01
 * time: 0.40010905265808105
    26    -1.583710e+02     1.133947e-01
 * time: 0.40117788314819336
    27    -1.583710e+02     7.922544e-02
 * time: 0.4022488594055176
    28    -1.583710e+02     5.954998e-02
 * time: 0.40346193313598633
    29    -1.583710e+02     4.157079e-02
 * time: 0.4046509265899658
    30    -1.583710e+02     4.295447e-02
 * time: 0.40584397315979004
    31    -1.583710e+02     5.170754e-02
 * time: 0.4069998264312744
    32    -1.583710e+02     2.644385e-02
 * time: 0.4085419178009033
    33    -1.583710e+02     4.548999e-03
 * time: 0.41005396842956543
    34    -1.583710e+02     2.501802e-02
 * time: 0.4115719795227051
    35    -1.583710e+02     3.763441e-02
 * time: 0.4127190113067627
    36    -1.583710e+02     3.206026e-02
 * time: 0.4138638973236084
    37    -1.583710e+02     1.003695e-02
 * time: 0.41501903533935547
    38    -1.583710e+02     2.209094e-02
 * time: 0.4161999225616455
    39    -1.583710e+02     4.954210e-03
 * time: 0.4173769950866699
    40    -1.583710e+02     1.609377e-02
 * time: 0.44985198974609375
    41    -1.583710e+02     1.579798e-02
 * time: 0.4507119655609131
    42    -1.583710e+02     1.014086e-03
 * time: 0.45177793502807617
    43    -1.583710e+02     6.050530e-03
 * time: 0.4528930187225342
    44    -1.583710e+02     1.354438e-02
 * time: 0.4536750316619873
    45    -1.583710e+02     4.473256e-03
 * time: 0.4544379711151123
    46    -1.583710e+02     4.644149e-03
 * time: 0.4552340507507324
    47    -1.583710e+02     9.831413e-03
 * time: 0.455996036529541
    48    -1.583710e+02     1.047835e-03
 * time: 0.4567749500274658
    49    -1.583710e+02     8.361009e-03
 * time: 0.4575538635253906
    50    -1.583710e+02     7.909388e-04
 * time: 0.4583289623260498
FittedPumasModel

Successful minimization:                      true

Likelihood approximation:              NaivePooled
Log-likelihood value:                    158.37103
Number of subjects:                            120
Number of parameters:         Fixed      Optimized
                                  1              6
Observation records:         Active        Missing
    Conc:                      1320              0
    Total:                     1320              0

------------------
         Estimate
------------------
tvcl      3.0054
tvv      14.089
tvka     44.228
Ω₁,₁      0.0
Ω₂,₂      0.0
Ω₃,₃      0.0
σ_p       0.32999
------------------
coefficients_table(pkfit_np)
7×3 DataFrame
Row Parameter Description Estimate
String Abstract… Float64
1 tvcl Clearance (L/hr)\n 3.005
2 tvv Volume (L)\n 14.089
3 tvka Absorption rate constant (h-1)\n 44.228
4 Ω₁,₁ ΩCL 0.0
5 Ω₂,₂ ΩVc 0.0
6 Ω₃,₃ ΩKa 0.0
7 σ_p Proportional RUV\n 0.33

The final estimates from the NaivePooled approach seem reasonably close to our initial guess from NCA, except for the tvka parameter. We will stick with our initial guess.

One way to be cautious before going into a complete fitting routine is to evaluate the likelihood of the individual subjects given the initial parameter values and see if any subject(s) pops out as unreasonable. There are a few ways of doing this:

  • check the loglikelihood subject wise
  • check if there any influential subjects

Below, we are basically checking if the initial estimates for any subject are way off that we are unable to compute the initial loglikelihood.

lls = []
for subj in pkpain_noplb
    push!(lls, loglikelihood(pk_1cmp, subj, pkparam, FOCE()))
end
# the plot below is using native CairoMakie `hist`
hist(lls; bins = 10, normalization = :none, color = (:black, 0.5), x_gap = 0)

A histogram of the individual loglikelihoods

Histogram of Loglikelihoods

The distribution of the loglikelihood’s suggest no extreme outliers.

A more convenient way is to use the findinfluential function that provides a list of k top influential subjects by showing the normalized (minus) loglikelihood for each subject. As you can see below, the minus loglikelihood in the range of 16 agrees with the histogram plotted above.

influential_subjects = findinfluential(pk_1cmp, pkpain_noplb, pkparam, FOCE())
5-element Vector{NamedTuple{(:id, :nll), Tuple{String, Float64}}}:
 (id = "148", nll = 16.6596588568447)
 (id = "135", nll = 16.648985190076335)
 (id = "156", nll = 15.959069556607497)
 (id = "159", nll = 15.441218240496482)
 (id = "149", nll = 14.715134644119514)
3.2.2.2 FOCE

Now that we have a good handle on our data, lets go ahead and fit a population model with FOCE:

pkfit_1cmp = fit(pk_1cmp, pkpain_noplb, pkparam, FOCE(); constantcoef = (; tvka = 2))
[ Info: Checking the initial parameter values.
[ Info: The initial negative log likelihood and its gradient are finite. Check passed.
Iter     Function value   Gradient norm 
     0    -5.935351e+02     5.597318e+02
 * time: 6.794929504394531e-5
     1    -7.022088e+02     1.707063e+02
 * time: 0.16498708724975586
     2    -7.314067e+02     2.903269e+02
 * time: 0.22076416015625
     3    -8.520591e+02     2.285888e+02
 * time: 0.27546000480651855
     4    -1.120191e+03     3.795410e+02
 * time: 0.39693212509155273
     5    -1.178784e+03     2.323978e+02
 * time: 0.4663691520690918
     6    -1.218320e+03     9.699907e+01
 * time: 0.5187010765075684
     7    -1.223641e+03     5.862105e+01
 * time: 0.5688879489898682
     8    -1.227620e+03     1.831402e+01
 * time: 0.619326114654541
     9    -1.228381e+03     2.132323e+01
 * time: 0.6671350002288818
    10    -1.230098e+03     2.921228e+01
 * time: 0.7165780067443848
    11    -1.230854e+03     2.029661e+01
 * time: 0.7649531364440918
    12    -1.231116e+03     5.229098e+00
 * time: 0.8119821548461914
    13    -1.231179e+03     1.689231e+00
 * time: 0.8577511310577393
    14    -1.231187e+03     1.215379e+00
 * time: 0.9022819995880127
    15    -1.231188e+03     2.770380e-01
 * time: 0.94405198097229
    16    -1.231188e+03     1.636650e-01
 * time: 0.9807579517364502
    17    -1.231188e+03     2.701138e-01
 * time: 1.005876064300537
    18    -1.231188e+03     3.163347e-01
 * time: 1.0426220893859863
    19    -1.231188e+03     1.505241e-01
 * time: 1.0807011127471924
    20    -1.231188e+03     2.484090e-02
 * time: 1.115065097808838
    21    -1.231188e+03     8.344982e-04
 * time: 1.1475889682769775
FittedPumasModel

Successful minimization:                      true

Likelihood approximation:                     FOCE
Log-likelihood value:                     1231.188
Number of subjects:                            120
Number of parameters:         Fixed      Optimized
                                  1              6
Observation records:         Active        Missing
    Conc:                      1320              0
    Total:                     1320              0

-------------------
         Estimate
-------------------
tvcl      3.1642
tvv      13.288
tvka      2.0
Ω₁,₁      0.08494
Ω₂,₂      0.048568
Ω₃,₃      5.5811
σ_p       0.10093
-------------------
infer(pkfit_1cmp)
[ Info: Calculating: variance-covariance matrix.
[ Info: Done.
Asymptotic inference results using sandwich estimator

Successful minimization:                      true

Likelihood approximation:                     FOCE
Log-likelihood value:                     1231.188
Number of subjects:                            120
Number of parameters:         Fixed      Optimized
                                  1              6
Observation records:         Active        Missing
    Conc:                      1320              0
    Total:                     1320              0

-------------------------------------------------------------------
        Estimate           SE                     95.0% C.I.
-------------------------------------------------------------------
tvcl     3.1642          0.086619         [ 2.9944  ;  3.334   ]
tvv     13.288           0.27481          [12.749   ; 13.827   ]
tvka     2.0             NaN              [  NaN    ;   NaN      ]
Ω₁,₁     0.08494         0.011022         [ 0.063338;  0.10654 ]
Ω₂,₂     0.048568        0.0063501        [ 0.036122;  0.061014]
Ω₃,₃     5.5811          1.2194           [ 3.1911  ;  7.9711  ]
σ_p      0.10093         0.0057196        [ 0.089718;  0.11214 ]
-------------------------------------------------------------------

Notice that tvka is fixed to 2 as we don’t have a lot of information before tmax. From the results above, we see that the parameter precision for this model is reasonable.

3.2.3 Two-compartment model

Just to be sure, let’s fit a 2-compartment model and evaluate:

pk_2cmp = @model begin

    @param begin
        """
        Clearance (L/hr)
        """
        tvcl  RealDomain(; lower = 0, init = 3.2)
        """
        Central Volume (L)
        """
        tvv  RealDomain(; lower = 0, init = 16.4)
        """
        Peripheral Volume (L)
        """
        tvvp  RealDomain(; lower = 0, init = 10)
        """
        Distributional Clearance (L/hr)
        """
        tvq  RealDomain(; lower = 0, init = 2)
        """
        Absorption rate constant (h-1)
        """
        tvka  RealDomain(; lower = 0, init = 1.3)
        """
          - ΩCL
          - ΩVc
          - ΩKa
          - ΩVp
          - ΩQ
        """
        Ω  PDiagDomain(init = [0.04, 0.04, 0.04, 0.04, 0.04])
        """
        Proportional RUV
        """
        σ_p  RealDomain(; lower = 0.0001, init = 0.2)
    end

    @random begin
        η ~ MvNormal(Ω)
    end

    @covariates begin
        """
        Dose (mg)
        """
        Dose
    end

    @pre begin
        CL = tvcl * exp(η[1])
        Vc = tvv * exp(η[2])
        Ka = tvka * exp(η[3])
        Vp = tvvp * exp(η[4])
        Q = tvq * exp(η[5])
    end

    @dynamics Depots1Central1Periph1

    @derived begin
        cp := @. Central / Vc
        """
        CTMx Concentration (ng/mL)
        """
        Conc ~ @. Normal(cp, cp * σ_p)
    end
end
PumasModel
  Parameters: tvcl, tvv, tvvp, tvq, tvka, Ω, σ_p
  Random effects: η
  Covariates: Dose
  Dynamical variables: Depot, Central, Peripheral
  Derived: Conc
  Observed: Conc
3.2.3.1 FOCE
pkfit_2cmp =
    fit(pk_2cmp, pkpain_noplb, init_params(pk_2cmp), FOCE(); constantcoef = (; tvka = 2))
[ Info: Checking the initial parameter values.
[ Info: The initial negative log likelihood and its gradient are finite. Check passed.
Iter     Function value   Gradient norm 
     0    -6.302369e+02     1.021050e+03
 * time: 6.103515625e-5
     1    -9.197817e+02     9.927951e+02
 * time: 0.12894105911254883
     2    -1.372640e+03     2.054986e+02
 * time: 0.25276613235473633
     3    -1.446326e+03     1.543987e+02
 * time: 0.3791351318359375
     4    -1.545570e+03     1.855028e+02
 * time: 0.49924802780151367
     5    -1.581449e+03     1.713157e+02
 * time: 0.6875019073486328
     6    -1.639433e+03     1.257382e+02
 * time: 0.8002951145172119
     7    -1.695964e+03     7.450539e+01
 * time: 0.9222500324249268
     8    -1.722243e+03     5.961044e+01
 * time: 1.0352609157562256
     9    -1.736883e+03     7.320921e+01
 * time: 1.1567559242248535
    10    -1.753547e+03     7.501938e+01
 * time: 1.2730131149291992
    11    -1.764053e+03     6.185661e+01
 * time: 1.4009671211242676
    12    -1.778991e+03     4.831033e+01
 * time: 1.5344030857086182
    13    -1.791492e+03     4.943278e+01
 * time: 1.6653239727020264
    14    -1.799847e+03     2.871410e+01
 * time: 1.8146750926971436
    15    -1.805374e+03     7.520789e+01
 * time: 1.9650909900665283
    16    -1.816260e+03     2.990621e+01
 * time: 2.111330032348633
    17    -1.818252e+03     2.401915e+01
 * time: 2.238595962524414
    18    -1.822988e+03     2.587225e+01
 * time: 2.360322952270508
    19    -1.824653e+03     1.550517e+01
 * time: 2.4876959323883057
    20    -1.826074e+03     1.788927e+01
 * time: 2.6025099754333496
    21    -1.826821e+03     1.888389e+01
 * time: 2.7291760444641113
    22    -1.827900e+03     1.432840e+01
 * time: 2.8555569648742676
    23    -1.828511e+03     9.422040e+00
 * time: 2.976840019226074
    24    -1.828754e+03     5.363445e+00
 * time: 3.10815691947937
    25    -1.828862e+03     4.916168e+00
 * time: 3.224151134490967
    26    -1.829007e+03     4.695750e+00
 * time: 3.353307008743286
    27    -1.829358e+03     1.090244e+01
 * time: 3.4827399253845215
    28    -1.829830e+03     1.451320e+01
 * time: 3.6071200370788574
    29    -1.830201e+03     1.108694e+01
 * time: 3.7400460243225098
    30    -1.830360e+03     2.892316e+00
 * time: 3.8706181049346924
    31    -1.830390e+03     1.699262e+00
 * time: 3.989469051361084
    32    -1.830404e+03     1.602221e+00
 * time: 4.109914064407349
    33    -1.830432e+03     2.823439e+00
 * time: 4.225950002670288
    34    -1.830475e+03     4.118415e+00
 * time: 4.351835012435913
    35    -1.830527e+03     5.082915e+00
 * time: 4.473376989364624
    36    -1.830591e+03     2.670079e+00
 * time: 4.608508110046387
    37    -1.830615e+03     3.512024e+00
 * time: 4.736472129821777
    38    -1.830623e+03     2.286718e+00
 * time: 4.857501029968262
    39    -1.830625e+03     1.670870e+00
 * time: 4.981276035308838
    40    -1.830627e+03     9.659338e-01
 * time: 5.087990045547485
    41    -1.830628e+03     9.247684e-01
 * time: 5.207504034042358
    42    -1.830628e+03     3.479743e-01
 * time: 5.312866926193237
    43    -1.830629e+03     4.506560e-01
 * time: 5.414853096008301
    44    -1.830630e+03     6.781412e-01
 * time: 5.531583070755005
    45    -1.830630e+03     4.430775e-01
 * time: 5.637785911560059
    46    -1.830630e+03     8.918801e-02
 * time: 5.737255096435547
    47    -1.830630e+03     2.405868e-03
 * time: 5.838191032409668
    48    -1.830630e+03     1.870239e-03
 * time: 5.923939943313599
    49    -1.830630e+03     1.873124e-03
 * time: 6.014481067657471
    50    -1.830630e+03     1.856009e-03
 * time: 6.132394075393677
    51    -1.830630e+03     1.856654e-03
 * time: 6.251924991607666
    52    -1.830630e+03     1.856385e-03
 * time: 6.356801986694336
    53    -1.830630e+03     1.853241e-03
 * time: 6.4754719734191895
    54    -1.830630e+03     1.853241e-03
 * time: 6.61060094833374
    55    -1.830630e+03     1.853241e-03
 * time: 6.745827913284302
FittedPumasModel

Successful minimization:                      true

Likelihood approximation:                     FOCE
Log-likelihood value:                    1830.6305
Number of subjects:                            120
Number of parameters:         Fixed      Optimized
                                  1             10
Observation records:         Active        Missing
    Conc:                      1320              0
    Total:                     1320              0

-------------------
         Estimate
-------------------
tvcl      2.8138
tvv      11.005
tvvp      5.54
tvq       1.5159
tvka      2.0
Ω₁,₁      0.10267
Ω₂,₂      0.060776
Ω₃,₃      1.2012
Ω₄,₄      0.42349
Ω₅,₅      0.24473
σ_p       0.048405
-------------------

3.3 Comparing One- versus Two-compartment models

The 2-compartment model has a much lower objective function compared to the 1-compartment. Let’s compare the estimates from the 2 models using the compare_estimates function.

compare_estimates(; pkfit_1cmp, pkfit_2cmp)
11×3 DataFrame
Row parameter pkfit_1cmp pkfit_2cmp
String Float64? Float64?
1 tvcl 3.1642 2.81378
2 tvv 13.288 11.0046
3 tvka 2.0 2.0
4 Ω₁,₁ 0.0849405 0.102669
5 Ω₂,₂ 0.0485682 0.0607756
6 Ω₃,₃ 5.58107 1.20116
7 σ_p 0.100928 0.0484049
8 tvvp missing 5.53997
9 tvq missing 1.51591
10 Ω₄,₄ missing 0.423493
11 Ω₅,₅ missing 0.244732

We perform a likelihood ratio test to compare the two nested models. The test statistic and the \(p\)-value clearly indicate that a 2-compartment model should be preferred.

lrtest(pkfit_1cmp, pkfit_2cmp)
Statistic:          1200.0
Degrees of freedom:      4
P-value:               0.0

We should also compare the other metrics and statistics, such ηshrinkage, ϵshrinkage, aic, and bic using the metrics_table function.

@chain metrics_table(pkfit_2cmp) begin
    leftjoin(metrics_table(pkfit_1cmp); on = :Metric, makeunique = true)
    rename!(:Value => :pk2cmp, :Value_1 => :pk1cmp)
end
20×3 DataFrame
Row Metric pk2cmp pk1cmp
String Any Any
1 Successful true true
2 Estimation Time 6.746 1.148
3 Subjects 120 120
4 Fixed Parameters 1 1
5 Optimized Parameters 10 6
6 Conc Active Observations 1320 1320
7 Conc Missing Observations 0 0
8 Total Active Observations 1320 1320
9 Total Missing Observations 0 0
10 Likelihood Approximation Pumas.FOCE Pumas.FOCE
11 LogLikelihood (LL) 1830.63 1231.19
12 -2LL -3661.26 -2462.38
13 AIC -3641.26 -2450.38
14 BIC -3589.41 -2419.26
15 (η-shrinkage) η₁ 0.037 0.016
16 (η-shrinkage) η₂ 0.047 0.04
17 (η-shrinkage) η₃ 0.516 0.733
18 (ϵ-shrinkage) Conc 0.185 0.105
19 (η-shrinkage) η₄ 0.287 missing
20 (η-shrinkage) η₅ 0.154 missing

We next generate some goodness of fit plots to compare which model is performing better. To do this, we first inspect the diagnostics of our model fit.

res_inspect_1cmp = inspect(pkfit_1cmp)
[ Info: Calculating predictions.
[ Info: Calculating weighted residuals.
[ Info: Calculating empirical bayes.
[ Info: Evaluating individual parameters.
[ Info: Evaluating dose control parameters.
[ Info: Done.
FittedPumasModelInspection

Fitting was successful: true
Likehood approximation used for weighted residuals : Pumas.FOCE()
res_inspect_2cmp = inspect(pkfit_2cmp)
[ Info: Calculating predictions.
[ Info: Calculating weighted residuals.
[ Info: Calculating empirical bayes.
[ Info: Evaluating individual parameters.
[ Info: Evaluating dose control parameters.
[ Info: Done.
FittedPumasModelInspection

Fitting was successful: true
Likehood approximation used for weighted residuals : Pumas.FOCE()
gof_1cmp = goodness_of_fit(res_inspect_1cmp; figure = (; fontsize = 12))

A 4-mosaic goodness of fit plot showing the 1-compartment model

Goodness of Fit Plots
gof_2cmp = goodness_of_fit(res_inspect_2cmp; figure = (; fontsize = 12))

Trend plot with observations for all individual subjects over time

Subject Fits

These plots clearly indicate that the 2-compartment model is a better fit compared to the 1-compartment model.

We can look at selected sample of individual plots.

fig_subject_fits = subject_fits(
    res_inspect_2cmp;
    separate = true,
    paginate = true,
    facet = (; combinelabels = true),
    figure = (; fontsize = 18),
    axis = (; xlabel = "Time (hr)", ylabel = "CTMx Concentration (ng/mL)"),
)
fig_subject_fits[1]

Trend plot with observations for 4 individual subjects over time

Subject Fits for 4 Individuals

There a lot of important plotting functions you can use for your standard model diagnostics. Please make sure to read the documentation for plotting. Below, we are checking the distribution of the empirical Bayes estimates.

empirical_bayes_dist(res_inspect_2cmp; zeroline_color = :red)

A histogram for the empirical Bayes distribution of all subject-specific parameters

Empirical Bayes Distribution
empirical_bayes_vs_covariates(
    res_inspect_2cmp;
    categorical = [:Dose],
    figure = (; resolution = (600, 800)),
)

A histogram for the empirical Bayes distribution of all subject-specific parameters stratified by categorical covariates

Empirical Bayes Distribution Stratified by Covariates

Clearly, our guess at tvka seems off-target. Let’s try and estimate tvka instead of fixing it to 2:

pkfit_2cmp_unfix_ka = fit(pk_2cmp, pkpain_noplb, init_params(pk_2cmp), FOCE())
[ Info: Checking the initial parameter values.
[ Info: The initial negative log likelihood and its gradient are finite. Check passed.
Iter     Function value   Gradient norm 
     0    -3.200734e+02     1.272671e+03
 * time: 7.891654968261719e-5
     1    -8.682982e+02     1.000199e+03
 * time: 0.19209694862365723
     2    -1.381870e+03     5.008081e+02
 * time: 0.35257697105407715
     3    -1.551053e+03     6.833490e+02
 * time: 0.5508878231048584
     4    -1.680887e+03     1.834586e+02
 * time: 0.6971509456634521
     5    -1.726118e+03     8.870274e+01
 * time: 0.8735129833221436
     6    -1.761023e+03     1.162036e+02
 * time: 1.0399467945098877
     7    -1.786619e+03     1.114552e+02
 * time: 1.2018718719482422
     8    -1.863556e+03     9.914305e+01
 * time: 1.3825809955596924
     9    -1.882942e+03     5.342676e+01
 * time: 1.56693696975708
    10    -1.888020e+03     2.010181e+01
 * time: 1.7427558898925781
    11    -1.889832e+03     1.867262e+01
 * time: 1.911958932876587
    12    -1.891649e+03     1.668510e+01
 * time: 2.078805923461914
    13    -1.892615e+03     1.820707e+01
 * time: 2.256208896636963
    14    -1.893453e+03     1.745193e+01
 * time: 2.4218368530273438
    15    -1.894760e+03     1.850174e+01
 * time: 2.589305877685547
    16    -1.895647e+03     1.773921e+01
 * time: 2.75596284866333
    17    -1.896597e+03     1.143421e+01
 * time: 2.9222638607025146
    18    -1.897114e+03     9.720034e+00
 * time: 3.0920848846435547
    19    -1.897373e+03     6.054160e+00
 * time: 3.257701873779297
    20    -1.897498e+03     3.985923e+00
 * time: 3.4223248958587646
    21    -1.897571e+03     4.262502e+00
 * time: 3.5868899822235107
    22    -1.897633e+03     4.010316e+00
 * time: 3.7477738857269287
    23    -1.897714e+03     4.805389e+00
 * time: 3.892836809158325
    24    -1.897802e+03     3.508614e+00
 * time: 4.0554609298706055
    25    -1.897865e+03     3.691472e+00
 * time: 4.213900804519653
    26    -1.897900e+03     2.982676e+00
 * time: 4.372879981994629
    27    -1.897928e+03     2.563863e+00
 * time: 4.534641981124878
    28    -1.897968e+03     3.261530e+00
 * time: 4.692546844482422
    29    -1.898013e+03     3.064695e+00
 * time: 4.8509509563446045
    30    -1.898040e+03     1.636456e+00
 * time: 5.014995813369751
    31    -1.898051e+03     1.439998e+00
 * time: 5.176599979400635
    32    -1.898057e+03     1.436505e+00
 * time: 5.320152997970581
    33    -1.898069e+03     1.881592e+00
 * time: 5.478768825531006
    34    -1.898095e+03     3.253228e+00
 * time: 5.640621900558472
    35    -1.898142e+03     4.257954e+00
 * time: 5.814818859100342
    36    -1.898199e+03     3.685153e+00
 * time: 5.975803852081299
    37    -1.898245e+03     2.567367e+00
 * time: 6.14474081993103
    38    -1.898246e+03     2.561623e+00
 * time: 6.386682987213135
    39    -1.898251e+03     2.530923e+00
 * time: 6.5984838008880615
    40    -1.898298e+03     2.674070e+00
 * time: 6.765326023101807
    41    -1.898300e+03     2.795248e+00
 * time: 6.952793836593628
    42    -1.898337e+03     3.729579e+00
 * time: 7.193566799163818
    43    -1.898428e+03     4.552315e+00
 * time: 7.360801935195923
    44    -1.898441e+03     4.064954e+00
 * time: 7.566473007202148
    45    -1.898444e+03     3.946564e+00
 * time: 7.810468912124634
    46    -1.898445e+03     3.887196e+00
 * time: 8.041023015975952
    47    -1.898447e+03     3.843752e+00
 * time: 8.272588014602661
    48    -1.898455e+03     1.529300e+02
 * time: 8.512478828430176
    49    -1.898544e+03     1.505372e+01
 * time: 8.678820848464966
    50    -1.898861e+03     3.981722e+00
 * time: 8.842283010482788
    51    -1.898892e+03     4.038144e+00
 * time: 9.001397848129272
    52    -1.898910e+03     4.249461e+00
 * time: 9.144452810287476
    53    -1.898976e+03     4.383672e+00
 * time: 9.311044931411743
    54    -1.899066e+03     6.170489e+00
 * time: 9.469858884811401
    55    -1.899168e+03     5.312543e+00
 * time: 9.630230903625488
    56    -1.899211e+03     2.138479e+00
 * time: 9.79216194152832
    57    -1.899217e+03     3.130196e-01
 * time: 9.952345848083496
    58    -1.899218e+03     4.118967e-02
 * time: 10.102561950683594
    59    -1.899218e+03     1.213456e-02
 * time: 10.235992908477783
    60    -1.899218e+03     3.026041e-03
 * time: 10.377192974090576
    61    -1.899218e+03     3.725927e-04
 * time: 10.51627492904663
FittedPumasModel

Successful minimization:                      true

Likelihood approximation:                     FOCE
Log-likelihood value:                    1899.2177
Number of subjects:                            120
Number of parameters:         Fixed      Optimized
                                  0             11
Observation records:         Active        Missing
    Conc:                      1320              0
    Total:                     1320              0

------------------
         Estimate
------------------
tvcl      2.6384
tvv      11.36
tvvp      8.1963
tvq       1.3182
tvka      4.8575
Ω₁,₁      0.12921
Ω₂,₂      0.06038
Ω₃,₃      0.40714
Ω₄,₄      0.14066
Ω₅,₅      0.25355
σ_p       0.04881
------------------
compare_estimates(; pkfit_2cmp, pkfit_2cmp_unfix_ka)
11×3 DataFrame
Row parameter pkfit_2cmp pkfit_2cmp_unfix_ka
String Float64? Float64?
1 tvcl 2.81378 2.63839
2 tvv 11.0046 11.3604
3 tvvp 5.53997 8.19634
4 tvq 1.51591 1.31818
5 tvka 2.0 4.8575
6 Ω₁,₁ 0.102669 0.129205
7 Ω₂,₂ 0.0607756 0.0603797
8 Ω₃,₃ 1.20116 0.407139
9 Ω₄,₄ 0.423493 0.140658
10 Ω₅,₅ 0.244732 0.253546
11 σ_p 0.0484049 0.0488095

Let’s revaluate the goodness of fits and η distribution plots.

Not much change in the general gof plots

res_inspect_2cmp_unfix_ka = inspect(pkfit_2cmp_unfix_ka)
[ Info: Calculating predictions.
[ Info: Calculating weighted residuals.
[ Info: Calculating empirical bayes.
[ Info: Evaluating individual parameters.
[ Info: Evaluating dose control parameters.
[ Info: Done.
FittedPumasModelInspection

Fitting was successful: true
Likehood approximation used for weighted residuals : Pumas.FOCE()
goodness_of_fit(res_inspect_2cmp_unfix_ka; figure = (; fontsize = 12))

A 4-mosaic goodness of fit plot showing the 2-compartment model

Goodness of Fit Plots

But you can see a huge improvement in the ηka, (η₃) distribution which is now centered around zero

empirical_bayes_vs_covariates(
    res_inspect_2cmp_unfix_ka;
    categorical = [:Dose],
    ebes = [:η₃],
    figure = (; resolution = (600, 800)),
)

A histogram for the empirical Bayes distribution of all subject-specific parameters stratified by categorical covariates

Empirical Bayes Distribution Stratified by Covariates

Finally looking at some individual plots for the same subjects as earlier:

fig_subject_fits2 = subject_fits(
    res_inspect_2cmp_unfix_ka;
    separate = true,
    paginate = true,
    facet = (; combinelabels = true, linkyaxes = false),
    figure = (; fontsize = 18),
    axis = (; xlabel = "Time (hr)", ylabel = "CTMx Concentration (ng/mL)"),
)
fig_subject_fits2[6]

Trend plot with observations for 4 individual subjects over time

Subject Fits for 4 Individuals

The randomly sampled individual fits don’t seem good in some individuals, but we can evaluate this via a vpc to see how to go about.

3.4 Visual Predictive Checks (VPC)

We can now perform a vpc to check. The default plots provide a 80% prediction interval and a 95% simulated CI (shaded area) around each of the quantiles

pk_vpc = vpc(
    pkfit_2cmp_unfix_ka,
    200;
    observations = [:Conc],
    stratify_by = [:Dose],
    ensemblealg = EnsembleThreads(), # multi-threading
)
[ Info: Continuous VPC
Visual Predictive Check
  Type of VPC: Continuous VPC
  Simulated populations: 200
  Subjects in data: 40
  Stratification variable(s): [:Dose]
  Confidence level: 0.95
  VPC lines: quantiles ([0.1, 0.5, 0.9])
vpc_plot(
    pk_2cmp,
    pk_vpc;
    rows = 1,
    columns = 3,
    figure = (; resolution = (1400, 1000), fontsize = 22),
    axis = (;
        xlabel = "Time (hr)",
        ylabel = "Observed/Predicted\n CTMx Concentration (ng/mL)",
    ),
    facet = (; combinelabels = true),
)

A visual predictive plot stratified by dose group

Visual Predictive Plots

The visual predictive check suggests that the model captures the data well across all dose levels.

4 Additional Help

If you have questions regarding this tutorial, please post them on our discourse site.