PK06 - One-compartment intravenous plasma/urine II

1 Background

  • Structural model - One compartment linear elimination with first order absorption
  • Route of administration - Oral and IV given simultaneously
  • Dosage Regimen - 12.5 mg IV and 25 mg Oral
  • Number of Subjects - 1

PK06 Graphic Model

2 Objective

In this tutorial, you will learn to build a one compartment model and to simulate the model for different subjects and dosage regimens.

3 Libraries

Call the necessary libraries to get started

using Pumas
using PumasUtilities
using AlgebraOfGraphics
using CairoMakie
using ColorSchemes
using Random
using CSV
using DataFramesMeta
using Dates

4 Model

In this one compartment model, we administer doses both oral and IV on two different occasions.

pk_06 = @model begin
    @metadata begin
        desc = "One Compartment Model with Urine Cmt"
        timeu = u"hr"
    end

    @param begin
        """
        Clearance (L/hr)
        """
        tvcl  RealDomain(lower = 0)
        """
        Volume of Distribution (L)
        """
        tvvc  RealDomain(lower = 0)
        """
        Fraction of drug excreted in Urine
        """
        tvfe  RealDomain(lower = 0)
        """
        Absorption Rate Constant (1/hr)
        """
        tvka  RealDomain(lower = 0)
        """
        Lag-time (hr)
        """
        tvlag  RealDomain(lower = 0)
        """
        Bioavailability
        """
        tvF  RealDomain(lower = 0)
        Ω  PDiagDomain(6)
        """
        Proportional RUV
        """
        σ²_prop  RealDomain(lower = 0)
        """
        Additive RUV
        """
        σ_add  RealDomain(lower = 0)
    end

    @random begin
        η ~ MvNormal(Ω)
    end

    @pre begin
        Cl = tvcl * exp(η[1])
        Vc = tvvc * exp(η[2])
        Ka = tvka * exp(η[3])
        fe = tvfe * exp(η[4])
    end

    @dosecontrol begin
        lags = (Depot = tvlag * exp(η[5]),)
        bioav = (Depot = tvF * exp(η[6]),)
    end

    @dynamics begin
        Depot' = -Ka * Depot
        Central' = Ka * Depot - (Cl / Vc) * Central
        Urine' = fe * (Cl / Vc) * Central
    end

    @derived begin
        """
        PK06 Plasma Concentration (μg/L)
        """
        cp = @. (Central / Vc)
        dv ~ @. Normal(cp, sqrt(cp^2 * σ²_prop))

        """
        PK06 Urine Amount (μg)
        """
        ae = @. Urine
        dv_ae ~ @. Normal(ae, σ_add)
    end
end
PumasModel
  Parameters: tvcl, tvvc, tvfe, tvka, tvlag, tvF, Ω, σ²_prop, σ_add
  Random effects: η
  Covariates: 
  Dynamical system variables: Depot, Central, Urine
  Dynamical system type: Matrix exponential
  Derived: cp, dv, ae, dv_ae
  Observed: cp, dv, ae, dv_ae

5 Parameters

Parameters provided for simulation. Note that tv represents the typical value for parameters.

  • Cl - Clearance (L/hr)
  • Vc - Volume of Central Compartment (L)
  • Fe - Fraction of drug excreted in Urine
  • lag - lag time (hr)
  • Ka - Absorption rate constant (hr⁻¹)
  • F - Bioavailability
  • Ω - Between Subject Variability
  • σ - Residual error
param = (
    tvcl = 6.02527,
    tvvc = 290.292,
    tvfe = 0.0698294,
    tvka = 0.420432,
    tvlag = 0.311831,
    tvF = 1.13591,
    Ω = Diagonal([0.04, 0.04, 0.04, 0.04, 0.04, 0.04]),
    σ²_prop = 0.015,
    σ_add = 3,
)

6 Dosage Regimen

6.1 For IV

A single subject receives an IV-bolus dose of 12.5 mg or 12500 μg

ev1 = DosageRegimen(12500, time = 0, cmt = 2)
1×10 DataFrame
Row time cmt amt evid ii addl rate duration ss route
Float64 Int64 Float64 Int8 Float64 Int64 Float64 Float64 Int8 NCA.Route
1 0.0 2 12500.0 1 0.0 0 0.0 0.0 0 NullRoute
sub1 = Subject(id = "1 - IV", events = ev1)
Subject
  ID: 1 - IV
  Events: 1

6.2 For Oral

A single subject receives an oral dose of 25 mg or 25000 μg

ev2 = DosageRegimen(25000, time = 0, cmt = 1)
1×10 DataFrame
Row time cmt amt evid ii addl rate duration ss route
Float64 Int64 Float64 Int8 Float64 Int64 Float64 Float64 Int8 NCA.Route
1 0.0 1 25000.0 1 0.0 0 0.0 0.0 0 NullRoute
sub2 = Subject(id = "2 - PO", events = ev2)
Subject
  ID: 2 - PO
  Events: 1
pop = [sub1, sub2]
Population
  Subjects: 2
  Observations: 

7 Simulation

Here, we will learn how to simultaneously simulate plasma concentration and urine amount after IV and oral administration.

Random.seed!(123)

The random effects are zero’ed out since we are simulating means

zfx = zero_randeffs(pk_06, pop, param)
2-element Vector{NamedTuple{(:η,), Tuple{Vector{Float64}}}}:
 (η = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0],)
 (η = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0],)
sim = simobs(pk_06, pop, param, zfx, obstimes = 0.1:0.1:168)
Simulated population (Vector{<:Subject})
  Simulated subjects: 2
  Simulated variables: cp, dv, ae, dv_ae

7.1 For IV

Let’s simulate for plasma concentration and amount excreted unchanged in urine.

The random effects are zero’ed out since we are simulating means

zfx = zero_randeffs(pk_06, sub1, param)
(η = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0],)
sim_sub1_iv = simobs(pk_06, sub1, param, zfx, obstimes = 0.1:0.1:168)
SimulatedObservations
  Simulated variables: cp, dv, ae, dv_ae
  Time: 0.1:0.1:168.0
df_sim_iv = DataFrame(sim_sub1_iv)
first(df_sim_iv, 5)
5×29 DataFrame
Row id time cp dv ae dv_ae evid lags_Depot bioav_Depot amt cmt rate duration ss ii route η_1 η_2 η_3 η_4 η_5 η_6 Depot Central Urine Cl Vc Ka fe
String? Float64 Float64? Float64? Float64? Float64? Int64? Float64? Float64? Float64? Symbol? Float64? Float64? Int8? Float64? NCA.Route? Float64? Float64? Float64? Float64? Float64? Float64? Float64? Float64? Float64? Float64? Float64? Float64? Float64?
1 1 - IV 0.0 missing missing missing missing 1 0.311831 1.13591 12500.0 Central 0.0 0.0 0 0.0 NullRoute 0.0 0.0 0.0 0.0 0.0 0.0 missing missing missing 6.02527 290.292 0.420432 0.0698294
2 1 - IV 0.1 42.9708 51.894 1.80984 -0.410209 0 missing missing missing missing missing missing missing missing missing 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12474.1 1.80984 6.02527 290.292 0.420432 0.0698294
3 1 - IV 0.2 42.8817 41.8845 3.61592 0.041409 0 missing missing missing missing missing missing missing missing missing 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12448.2 3.61592 6.02527 290.292 0.420432 0.0698294
4 1 - IV 0.3 42.7928 49.7791 5.41826 1.41143 0 missing missing missing missing missing missing missing missing missing 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12422.4 5.41826 6.02527 290.292 0.420432 0.0698294
5 1 - IV 0.4 42.7041 49.2717 7.21686 7.58476 0 missing missing missing missing missing missing missing missing missing 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12396.7 7.21686 6.02527 290.292 0.420432 0.0698294

7.2 For Oral

Let’s simulate the plasma concentration and amount excreted unchanged in urine.

The random effects are zero’ed out since we are simulating means

zfx = zero_randeffs(pk_06, sub2, param)
(η = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0],)
sim_sub2_oral = simobs(pk_06, sub2, param, obstimes = 0.1:0.1:168)
SimulatedObservations
  Simulated variables: cp, dv, ae, dv_ae
  Time: 0.1:0.1:168.0
df_sim_oral = DataFrame(sim_sub2_oral)
first(df_sim_oral, 5)
5×29 DataFrame
Row id time cp dv ae dv_ae evid lags_Depot bioav_Depot amt cmt rate duration ss ii route η_1 η_2 η_3 η_4 η_5 η_6 Depot Central Urine Cl Vc Ka fe
String? Float64 Float64? Float64? Float64? Float64? Int64? Float64? Float64? Float64? Symbol? Float64? Float64? Int8? Float64? NCA.Route? Float64? Float64? Float64? Float64? Float64? Float64? Float64? Float64? Float64? Float64? Float64? Float64? Float64?
1 2 - PO 0.0 missing missing missing missing 1 0.297778 1.53409 25000.0 Depot 0.0 0.0 0 0.0 NullRoute 0.381318 -0.0635945 -0.268354 -0.227323 -0.0461145 0.3005 missing missing missing 8.82228 272.406 0.321478 0.0556305
2 2 - PO 0.1 0.0 0.0 0.0 -5.18854 0 missing missing missing missing missing missing missing missing missing 0.381318 -0.0635945 -0.268354 -0.227323 -0.0461145 0.3005 0.0 0.0 0.0 8.82228 272.406 0.321478 0.0556305
3 2 - PO 0.2 0.0 0.0 0.0 -4.76031 0 missing missing missing missing missing missing missing missing missing 0.381318 -0.0635945 -0.268354 -0.227323 -0.0461145 0.3005 0.0 0.0 0.0 8.82228 272.406 0.321478 0.0556305
4 2 - PO 0.3 0.100549 0.127716 5.48435e-5 5.53784 0 missing missing missing missing missing missing missing missing missing 0.381318 -0.0635945 -0.268354 -0.227323 -0.0461145 0.3005 38324.7 27.3902 5.48435e-5 8.82228 272.406 0.321478 0.0556305
5 2 - PO 0.4 4.54393 4.01653 0.114672 -4.90659 0 missing missing missing missing missing missing missing missing missing 0.381318 -0.0635945 -0.268354 -0.227323 -0.0461145 0.3005 37112.3 1237.79 0.114672 8.82228 272.406 0.321478 0.0556305
@rsubset! df_sim_oral :time > 0.2

8 Visualization

Combined Plot of IV data and Oral data

plasma_times = [0.3, 0.6, 1, 2, 3, 4, 6, 8, 24, 48, 72, 96, 168]
df_iv_plasma = @rsubset df_sim_iv :time in plasma_times
df_oral_plasma = @rsubset df_sim_oral :time in plasma_times
urine_times = [24, 48]
df_iv_urine = @rsubset df_sim_iv :time in urine_times
df_oral_urine = @rsubset df_sim_oral :time in urine_times
ivsim_plt = @chain df_sim_iv begin
    @rtransform :Type = "IV Prediction"
    dropmissing(:cp)
    data(_) *
    mapping(
        :time => "Time (hours)",
        :cp => "Concentration (μg/L) & Amount (μg)",
        color = :Type,
    ) *
    visual(Lines, linewidth = 4)
end

iv_plt = @chain df_iv_plasma begin
    @rtransform :Type = "IV Observations"
    dropmissing(:cp)
    data(_) *
    mapping(
        :time => "Time (hours)",
        :cp => "Concentration (μg/L) & Amount (μg)",
        color = :Type,
    ) *
    visual(Scatter, color = :blue, markersize = 14)
end

ivurine_plt = @chain df_iv_urine begin
    @rtransform :Type = "IV Observations Amount"
    dropmissing(:ae)
    data(_) *
    mapping(
        :time => "Time (hours)",
        :ae => "Concentration (μg/L) & Amount (μg)",
        color = :Type,
    ) *
    visual(ScatterLines, color = :blue, markersize = 14, linewidth = 4)
end

oralsim_plt = @chain df_sim_oral begin
    @rtransform :Type = "Oral Prediction"
    dropmissing(:cp)
    data(_) *
    mapping(
        :time => "Time (hours)",
        :cp => "Concentration (μg/L) & Amount (μg)",
        color = :Type,
    ) *
    visual(Lines, linewidth = 4)
end

oral_plt = @chain df_oral_plasma begin
    @rtransform :Type = "Oral Observations"
    dropmissing(:cp)
    data(_) *
    mapping(
        :time => "Time (hours)",
        :cp => "Concentration (μg/L) & Amount (μg)",
        color = :Type,
    ) *
    visual(Scatter, markersize = 14)
end

oralurine_plt = @chain df_oral_urine begin
    @rtransform :Type = "Oral Observations Amount"
    dropmissing(:ae)
    data(_) *
    mapping(
        :time => "Time (hours)",
        :ae => "Concentration (μg/L) & Amount (μg)",
        color = :Type,
    ) *
    visual(ScatterLines, markersize = 14, linewidth = 4)
end

draw(
    ivsim_plt + iv_plt + ivurine_plt + oralsim_plt + oral_plt + oralurine_plt;
    axis = (;
        xticks = [0, 20, 40, 60, 80, 100, 120, 140, 160, 180],
        yscale = Makie.Symlog10(10),
        yticks = [1, 10, 100, 1000, 2000],
        ytickformat = x -> string.(round.(x; digits = 1)),
        ygridwidth = 3,
        yminorticksvisible = true,
        yminorgridvisible = true,
        yminorticks = IntervalsBetween(10),
        xminorticksvisible = true,
        xminorgridvisible = true,
        xminorticks = IntervalsBetween(5),
    ),
    figure = (; fontsize = 22),
    legend = (position = :bottom, nbanks = 3, tellwidth = true),
    palettes = (; color = ColorSchemes.tableau_10.colors),
)