PK27 - Allometry - Elementary & Complex Dedrick plot

1 Background

  • Structural model - Target Mediated Drug Disposition Model (TMDD)
  • Route of administration - IV-Bolus
  • Dosage Regimen - 1.5, 5, 15, 45 mg/kg administered after a complete washout
  • Number of Subjects - 4

PK27 Graphic Model

2 Learning Outcome

  • To fit a full TMDD model with data from only ligand, ligand and target, target and ligand-target complex
  • Write a differential equation for a full TMDD model

3 Objective

The objective of this exercise is to simulate from a TMDD model

4 Libraries

Call the necessary libraries to get started

using Random
using Pumas
using PumasUtilities
using AlgebraOfGraphics
using CairoMakie
using CSV
using DataFramesMeta
using Dates

5 Model

pk_27 = @model begin
    @metadata begin
        desc = "Target Mediated Drug Disposition Model"
        timeu = u"hr"
    end

    @param begin
        """
        Clearance of central compartment (L/kg/hr)
        """
        tvcl  RealDomain(lower = 0)
        """
        Second order on rate of ligand (L/mg/hr)
        """
        tvkon  RealDomain(lower = 0)
        """
        First order off rate of ligand (1/hr)
        """
        tvkoff  RealDomain(lower = 0)
        """
        Volume of Peripheral Compartment (L/kg)
        """
        tvvp  RealDomain(lower = 0)
        """
        Inter-compartmental clearance (L/kg/hr)
        """
        tvq  RealDomain(lower = 0)
        """
        Zero order receptor synthesis process (mg/L/hr)
        """
        tvkin  RealDomain(lower = 0)
        """
        First order receptor degeneration process (1/hr)
        """
        tvkout  RealDomain(lower = 0)
        """
        First order elimination of complex (1/hr)
        """
        tvkerl  RealDomain(lower = 0)
        """
        Volume of Central Compartment (L/kg)
        """
        tvvc  RealDomain(lower = 0)
        Ω  PDiagDomain(9)
        """
        Proportional RUV - Plasma
        """
        σ²_prop_cp  RealDomain(lower = 0)
        """
        Proportional RUV - Receptor
        """
        σ²_prop_rec  RealDomain(lower = 0)
        """
        Proportional RUV - Complex
        """
        σ²_prop_com  RealDomain(lower = 0)
    end

    @random begin
        η ~ MvNormal(Ω)
    end

    @pre begin
        Cl = tvcl * exp(η[1])
        Kon = tvkon * exp(η[2])
        Koff = tvkoff * exp(η[3])
        Vp = tvvp * exp(η[4])
        Q = tvq * exp(η[5])
        Kin = tvkin * exp(η[6])
        Kout = tvkout * exp(η[7])
        Kerl = tvkerl * exp(η[8])
        Vc = tvvc * exp(η[9])
    end

    @dosecontrol begin
        Vc_ = tvvc * exp(η[9])
        bioav = (Central = 1 / Vc_,)
    end

    @init begin
        Receptor = Kin / Kout
    end

    @dynamics begin
        Central' =
            -(Cl / Vc) * Central - (Q / Vc) * Central + (Q / Vp) * Peripheral -
            Kon * Receptor * Central + Koff * Complex
        Peripheral' = (Q / Vc) * Central - (Q / Vp) * Peripheral
        Receptor' = Kin - Kout * Receptor - Kon * Receptor * Central + Koff * Complex
        Complex' = Kon * Receptor * Central - Koff * Complex - Kerl * Complex
    end

    @derived begin
        cp = @. Central
        """
        Observed Concentration - Plasma (mg/L)
        """
        dv_cp = @. Normal(cp, sqrt(cp^2 * σ²_prop_cp))
        rec = @. Receptor
        """
        Observed Concentration - Receptor (mg/L)
        """
        dv_rec = @. Normal(rec, sqrt(rec^2 * σ²_prop_rec))
        com = @. Complex
        """
        Observed Concentration - Complex (mg/L)
        """
        dv_com = @. Normal(com, sqrt(com^2 * σ²_prop_com))
    end
end
PumasModel
  Parameters: tvcl, tvkon, tvkoff, tvvp, tvq, tvkin, tvkout, tvkerl, tvvc, Ω, σ²_prop_cp, σ²_prop_rec, σ²_prop_com
  Random effects: η
  Covariates: 
  Dynamical system variables: Central, Peripheral, Receptor, Complex
  Dynamical system type: Nonlinear ODE
  Derived: cp, dv_cp, rec, dv_rec, com, dv_com
  Observed: cp, dv_cp, rec, dv_rec, com, dv_com

6 Parameters

The parameters are as given below. tv represents the typical value for parameters.

  • Cl - Clearance of central compartment (L/kg/hr)
  • Kon - Second order on rate of ligand (L/mg/hr)
  • Koff - First order off rate of ligand (1/hr)
  • Vp - Volume of Peripheral Compartment (L/kg)
  • Q - Inter-compartmental clearance (L/kg/hr)
  • Kin - Zero order receptor synthesis process (mg/L/hr)
  • Kout - First order receptor degeneration process (1/hr)
  • Kerl - First order elimination of complex (1/hr)
  • Vc - Volume of Central Compartment (L/kg)
param = (
    tvcl = 0.001,
    tvkon = 0.096,
    tvkoff = 0.001,
    tvvp = 0.100,
    tvq = 0.003,
    tvkin = 0.11,
    tvkout = 0.0089,
    tvkerl = 0.003,
    tvvc = 0.05,
    Ω = Diagonal([0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04]),
    σ²_prop_cp = 0.02,
    σ²_prop_rec = 0.012,
    σ²_prop_com = 0.015,
)

7 Dosage Regimen

  • Single dose of 1.5 mg/kg was administered as IV-Bolus at time=0
  • Single dose of 5 mg/kg was administered as IV-Bolus at time=0
  • Single dose of 15 mg/kg was administered as IV-Bolus at time=0
  • Single dose of 45 mg/kg was administered as IV-Bolus at time=0
dose = [1.5, 5, 15, 45]
ids = ["1.5 mg/kg", "5 mg/kg", "15 mg/kg", "45 mg/kg"]
dose_ind(x) = DosageRegimen(dose[x], time = 0, cmt = 1)
pop4_sub = map(
    i -> Subject(
        id = ids[i],
        events = dose_ind(i),
        observations = (cp = nothing, rec = nothing, com = nothing),
    ),
    1:length(ids),
)
Population
  Subjects: 4
  Observations: cp, rec, com

8 Simulation

Random.seed!(123)

The random effects are zero’ed out since we are simulating means

zfx = zero_randeffs(pk_27, pop4_sub, param)
4-element Vector{NamedTuple{(:η,), Tuple{Vector{Float64}}}}:
 (η = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],)
 (η = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],)
 (η = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],)
 (η = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],)
sim_pop4 = simobs(pk_27, pop4_sub, param, zfx, obstimes = 0.1:1:500)
Simulated population (Vector{<:Subject})
  Simulated subjects: 4
  Simulated variables: cp, dv_cp, rec, dv_rec, com, dv_com

9 Visualization

df27 = @chain DataFrame(sim_pop4) begin
    dropmissing([:cp, :rec, :com])
end
fig = Figure(; fontsize = 32, resolution = (1200, 1200))
ytickformater(ticks) = @. string(round(ticks; digits = 1))

gridpos = fig[1, 1]
plt1 =
    data(df27) *
    mapping(
        :time => "Time (days)",
        :cp => "PK27 Concentrations (mg/L)",
        color = :id => nonnumeric => "Doses",
    ) *
    visual(Lines, linewidth = 6)
draw!(
    gridpos,
    plt1;
    axis = (;
        title = "Ligand",
        yscale = log10,
        yticks = map(i -> 10.0^i, -2:2),
        ytickformat = ytickformater,
        xticks = 0:100:500,
    ),
)

gridpos = fig[1, 2]
plt2 =
    data(df27) *
    mapping(
        :time => "Time (days)",
        :rec => "PK27 Concentrations (mg/L)",
        color = :id => nonnumeric => "Doses",
    ) *
    visual(Lines, linewidth = 6)
draw!(
    gridpos,
    plt2;
    axis = (;
        title = "Receptor",
        yscale = log10,
        yticks = map(i -> 10.0^i, -2:1),
        ytickformat = ytickformater,
        xticks = 0:100:500,
    ),
)

gridpos = fig[2, 1]
plt3 =
    data(df27) *
    mapping(
        :time => "Time (days)",
        :com => "PK27 Concentrations (mg/L)",
        color = :id => nonnumeric => "Doses",
    ) *
    visual(Lines, linewidth = 6)
p3 = draw!(
    gridpos,
    plt3;
    axis = (;
        title = "Complex",
        yscale = log10,
        yticks = map(i -> 10.0^i, 0.6:0.2:1.4),
        ytickformat = ytickformater,
        xticks = 0:100:500,
    ),
)

gridpos = fig[2, 2]
legend!(
    gridpos,
    p3;
    linewidth = 8,
    tellwidth = false,
    halign = :right,
    valign = :center,
    margin = (10, 10, 10, 10),
)
fig

10 Population simulation

par = (
    tvcl = 0.001,
    tvkon = 0.096,
    tvkoff = 0.001,
    tvvp = 0.100,
    tvq = 0.003,
    tvkin = 0.11,
    tvkout = 0.0089,
    tvkerl = 0.003,
    tvvc = 0.05,
    Ω = Diagonal([0.09, 0.04, 0.0125, 0.04, 0.0326, 0.0525, 0.0124, 0.0111, 0.0234]),
    σ²_prop_cp = 0.025,
    σ²_prop_rec = 0.03,
    σ²_prop_com = 0.04,
)

ev1 = DosageRegimen(1.5, cmt = 1, time = 0)
pop1 = map(i -> Subject(id = i, events = ev1), 1:20)
ev2 = DosageRegimen(5, cmt = 1, time = 0)
pop2 = map(i -> Subject(id = i, events = ev2), 21:40)
ev3 = DosageRegimen(15, cmt = 1, time = 0)
pop3 = map(i -> Subject(id = i, events = ev3), 41:60)
ev4 = DosageRegimen(45, cmt = 1, time = 0)
pop4 = map(i -> Subject(id = i, events = ev4), 61:80)
pop = [pop1; pop2; pop3; pop4]

## Simulation
Random.seed!(1234)
sim_pop = simobs(pk_27, pop, par, obstimes = [0.1, 1, 10, 24, 72, 120, 168, 240, 360, 499])
sim_plot(sim_pop)

df_sim = DataFrame(sim_pop);

#CSV.write("pk_27.csv", df_sim)