PK50 - Analysis of multiple subjects concentration and response-time profiles

1 Background

  • Structural model - Two compartment Model
  • Route of administration - IV Infusion
  • Dosage Regimen - 566 μg
  • Number of Subjects - 12

PK50 Model Graphic

2 Learning Outcome

To analyze and interpret exposure and effect with plasma protein binding as a co-covariate of PK parameters and exposure

3 Objectives

To build a sequential PKPD model for a drug considering fraction unbound as a covariate

4 Libraries

Call the necessary libraries to get started.

using Random
using Pumas
using PumasUtilities
using CairoMakie
using AlgebraOfGraphics
using DataFramesMeta
using CSV
using Dates

5 Model

A sequential two compartment PKPD model for a drug after infusion over 5 hours

pk_50 = @model begin
    @metadata begin
        desc = "Two Compartment Model"
        timeu = u"hr"
    end

    @param begin
        """
        Clearance (L/hr)
        """
        tvcl  RealDomain(lower = 0)
        """
        Intercompartmental Clearance (L/hr)
        """
        tvcld  RealDomain(lower = 0)
        """
        Volume of Disttibution - Central (L)
        """
        tvvc  RealDomain(lower = 0)
        """
        Volume of Disttibution - Peripheral (L)
        """
        tvvt  RealDomain(lower = 0)
        """
        Concentration which produces 50% effect (μg/L)
        """
        tvec50  RealDomain(lower = 0)
        """
        Maximum Effect
        """
        tvemax  RealDomain(lower = 0)
        """
        Sigmoidicity factor
        """
        tvsigma  RealDomain(lower = 0)
        Ω  PDiagDomain(7)
        """
        Proportional RUV
        """
        σ_prop  RealDomain(lower = 0)
        """
        Additive RUV
        """
        σ_add  RealDomain(lower = 0)
    end

    @random begin
        η ~ MvNormal(Ω)
    end

    @covariates fu

    @pre begin
        Cl = tvcl * (1 / fu) * exp(η[1])
        Cld = tvcld * (1 / fu) * exp(η[2])
        Vc = tvvc * (1 / fu) * exp(η[3])
        Vt = tvvt * (1 / fu) * exp(η[4])
        EC50 = tvec50 * (fu) * exp(η[5])
        Emax = tvemax * exp(η[6])
        sigma = tvsigma * exp(η[7])
    end

    @dynamics begin
        Central' = -(Cl / Vc) * Central - (Cld / Vc) * Central + (Cld / Vt) * Peripheral
        Peripheral' = (Cld / Vc) * Central - (Cld / Vt) * Peripheral
    end

    @derived begin
        cp = @. Central / Vc
        """
        Observed Concentration (μg/L)
        """
        dv_cp ~ @. Normal(cp, sqrt(cp^2 * σ_prop))
        ef = @. Emax * (cp^sigma) / (EC50^sigma + cp^sigma)
        """
        Observed Response
        """
        dv_ef ~ @. Normal(ef, σ_add)
    end
end
PumasModel
  Parameters: tvcl, tvcld, tvvc, tvvt, tvec50, tvemax, tvsigma, Ω, σ_prop, σ_add
  Random effects: η
  Covariates: fu
  Dynamical system variables: Central, Peripheral
  Dynamical system type: Matrix exponential
  Derived: cp, dv_cp, ef, dv_ef
  Observed: cp, dv_cp, ef, dv_ef

6 Parameters

Parameters provided for simulation are as below. Note that tv represents the typical value for parameters.

  • Cl - Clearance (L/hr)
  • Vc - Volume of distribution in central compartment (L)
  • Vp - Volume of distribution in Peripheral compartment (L)
  • Q - Intercompartmental Clearance (L/hr)
  • EC50 - Concentration which produces 50% effect (μg/L)
  • Emax - Maximum Effect
  • sigma - Sigmoidicity factor
param = (;
    tvcl = 11.4,
    tvcld = 4.35,
    tvvc = 19.9,
    tvvt = 30.9,
    tvec50 = 1.8,
    tvemax = 2.1,
    tvsigma = 2.1,
    Ω = Diagonal([0.0784, 0.1521, 0.0841, 0.1225, 0.16, 0.36, 0.09]),
    σ_prop = 0.00,
    σ_add = 0.00,
)

7 Dosage Regimen

A group of 12 subjects is administered a dose of 566 μg infused over 5 hours

## Total Plasma Concentration
ev1 = DosageRegimen(566, cmt = 1, time = 0, duration = 5)
1×10 DataFrame
Row time cmt amt evid ii addl rate duration ss route
Float64 Int64 Float64 Int8 Float64 Int64 Float64 Float64 Int8 NCA.Route
1 0.0 1 566.0 1 0.0 0 113.2 5.0 0 NullRoute
sub_total =
    map(i -> Subject(id = i, events = ev1, covariates = (fu = 1, group = "Total")), 1:12)
Population
  Subjects: 12
  Covariates: fu, group
  Observations: 
## Unbound Plasma Concentration
fu1 = Normal(0.016, 0.0049)
Random.seed!(1234)
fu = rand(fu1, 12)
12-element Vector{Float64}:
 0.01543490980387186
 0.016091695415129437
 0.02733828291993539
 0.01056668091897708
 0.02365434640105106
 0.019207146265285493
 0.011243058890447877
 0.014273355570615185
 0.009510289335555006
 0.004854703035472016
 0.016277903707770366
 0.023564516452971834
df_unbound = map(
    ((i, fui),) -> DataFrame(
        id = i,
        amt = 566,
        time = 0,
        cmt = 1,
        evid = 1,
        rate = 113.2,
        dv_cp = missing,
        dv_ef = missing,
        fu = fui,
        group = "Unbound",
    ),
    zip(1:12, fu),
)
df1_unbound = vcat(DataFrame.(df_unbound)...)
12×10 DataFrame
Row id amt time cmt evid rate dv_cp dv_ef fu group
Int64 Int64 Int64 Int64 Int64 Float64 Missing Missing Float64 String
1 1 566 0 1 1 113.2 missing missing 0.0154349 Unbound
2 2 566 0 1 1 113.2 missing missing 0.0160917 Unbound
3 3 566 0 1 1 113.2 missing missing 0.0273383 Unbound
4 4 566 0 1 1 113.2 missing missing 0.0105667 Unbound
5 5 566 0 1 1 113.2 missing missing 0.0236543 Unbound
6 6 566 0 1 1 113.2 missing missing 0.0192071 Unbound
7 7 566 0 1 1 113.2 missing missing 0.0112431 Unbound
8 8 566 0 1 1 113.2 missing missing 0.0142734 Unbound
9 9 566 0 1 1 113.2 missing missing 0.00951029 Unbound
10 10 566 0 1 1 113.2 missing missing 0.0048547 Unbound
11 11 566 0 1 1 113.2 missing missing 0.0162779 Unbound
12 12 566 0 1 1 113.2 missing missing 0.0235645 Unbound
pop12_unbound =
    read_pumas(df1_unbound, observations = [:dv_cp, :dv_ef], covariates = [:fu, :group])
Population
  Subjects: 12
  Covariates: fu, group
  Observations: dv_cp, dv_ef
pop24_sub = [sub_total; pop12_unbound]

8 Simulation

Simulate the data and create a DataFrame with specific data points.

sim_pop24_sub = simobs(
    pk_50,
    pop24_sub,
    param,
    obstimes = [
        0.1,
        0.25,
        0.5,
        0.75,
        1,
        2,
        3,
        4,
        4.999,
        5.03,
        5.08,
        5.17,
        5.25,
        5.5,
        5.75,
        6,
        6.5,
        7,
        8,
        9,
        10,
        12,
        24,
    ],
)
Simulated population (Vector{<:Subject})
  Simulated subjects: 24
  Simulated variables: cp, dv_cp, ef, dv_ef
df50 = DataFrame(sim_pop24_sub)
first(df50, 5)
5×32 DataFrame
Row id time cp dv_cp ef dv_ef evid amt cmt rate duration ss ii route fu group η_1 η_2 η_3 η_4 η_5 η_6 η_7 Central Peripheral Cl Cld Vc Vt EC50 Emax sigma
String? Float64 Float64? Float64? Float64? Float64? Int64? Float64? Symbol? Float64? Float64? Int8? Float64? NCA.Route? Float64? String? Float64? Float64? Float64? Float64? Float64? Float64? Float64? Float64? Float64? Float64? Float64? Float64? Float64? Float64? Float64? Float64?
1 1 0.0 missing missing missing missing 1 566.0 Central 113.2 5.0 0 0.0 NullRoute 1.0 Total 0.0460301 -0.0549254 0.221501 -0.329275 0.586409 -0.541874 0.130833 missing missing 11.937 4.11752 24.8342 22.2309 3.23554 1.22148 2.39353
2 1 0.1 0.441424 0.441424 0.0102941 0.0102941 0 missing missing missing missing missing missing missing 1.0 Total 0.0460301 -0.0549254 0.221501 -0.329275 0.586409 -0.541874 0.130833 10.9624 0.0912879 11.937 4.11752 24.8342 22.2309 3.23554 1.22148 2.39353
3 1 0.25 1.05257 1.05257 0.0778018 0.0778018 0 missing missing missing missing missing missing missing 1.0 Total 0.0460301 -0.0549254 0.221501 -0.329275 0.586409 -0.541874 0.130833 26.1398 0.547647 11.937 4.11752 24.8342 22.2309 3.23554 1.22148 2.39353
4 1 0.5 1.94988 1.94988 0.28011 0.28011 0 missing missing missing missing missing missing missing 1.0 Total 0.0460301 -0.0549254 0.221501 -0.329275 0.586409 -0.541874 0.130833 48.4237 2.04836 11.937 4.11752 24.8342 22.2309 3.23554 1.22148 2.39353
5 1 0.75 2.71656 2.71656 0.484789 0.484789 0 missing missing missing missing missing missing missing 1.0 Total 0.0460301 -0.0549254 0.221501 -0.329275 0.586409 -0.541874 0.130833 67.4637 4.31569 11.937 4.11752 24.8342 22.2309 3.23554 1.22148 2.39353

9 Visualization

Plot a graph of Concentrations vs Time

@chain df50 begin
    dropmissing!(:cp)
    data(_) *
    mapping(
        :time => "Time (hrs)",
        :cp => "Concentration (μg/L)",
        color = :group => "",
        group = :id,
    ) *
    visual(Lines, linewidth = 2)
    draw(;
        axis = (;
            xticks = 0:5:25,
            yscale = log10,
            ytickformat = i -> (@. string(round(i; sigdigits = 1))),
        ),
        figure = (; fontsize = 22),
    )
end

Plot a graph of Response vs Concentrations

@chain df50 begin
    dropmissing!(:cp)
    data(_) *
    mapping(
        :cp => "Concentration (μg/L)",
        :ef => "Response",
        color = :group => "",
        group = :id,
    ) *
    visual(Lines, linewidth = 2)
    draw(;
        axis = (; xscale = log10, xtickformat = i -> (@. string(round(i; sigdigits = 1)))),
        figure = (; fontsize = 22),
    )
end

Question - 1 and 2

  1. What infusion rate do you aim at in the present patient population during the first hour to reach a plasma concentration > 10 μg/L and < 50 μg/L.

Ans: We have targeted a plasma concentration of 30 μg/L and thus the dose required to achieve that concentration is 784 μg given as an IV-infusion over 1 hour, followed by a 7843 μg given as an IV-infusion over 23 hours

  1. What Infusion rate is needed to remain at the steady state plasma concentration between 1 and 24 hours?

Ans: An infusion rate of 341 μg/hr is given to achieve the steady-state plasma concentration of 30 μg/L

## Dosage Regimen - Total Plasma Concentration
ev12 = DosageRegimen([784, 7843], cmt = 1, time = [0, 1], rate = [784, 341])
pop12 = Population(
    map(i -> Subject(id = i, events = ev12, covariates = (fu = 1, group = "Total")), 1:12),
)

## Simulation
Random.seed!(123)
sim12 = simobs(
    pk_50,
    pop12,
    param,
    obstimes = [
        0.1,
        0.25,
        0.5,
        0.75,
        1,
        2,
        3,
        4,
        4.999,
        5.03,
        5.08,
        5.17,
        5.25,
        5.5,
        5.75,
        6,
        6.5,
        7,
        8,
        9,
        10,
        12,
        24,
    ],
)
df12 = DataFrame(sim12)
dropmissing!(df12, :cp)

@chain df12 begin
    data(_) *
    mapping(:time => "Time (hrs)", :cp => "Concentration (μg/L)", group = :id) *
    visual(Lines, linewidth = 2)
    draw(;
        axis = (;
            xticks = 0:5:25,
            yscale = log10,
            ytickformat = i -> (@. string(round(i; sigdigits = 1))),
        ),
        figure = (; fontsize = 22),
    )
end

Question - 3

  1. What unbound plasma concentration are reached (given the range) with the infusion rates calculated for the 1+23 hrs regimen? How does the variability seen in the predicted exposure at 1 and 24 hours compare between total and unbound concentration?
## Dosage Regimen - Unbound Plasma Concentration
df_3 = map(
    ((i, fui),) -> DataFrame(
        id = i,
        amt = [784, 7800],
        time = [0, 1],
        cmt = [1, 1],
        evid = [1, 1],
        rate = [784, 339],
        dv_cp = missing,
        dv_ef = missing,
        fu = fui,
        group = "Unbound",
    ),
    zip(1:12, fu),
)
df1_3 = vcat(DataFrame.(df_3)...)
pop_3_unbound =
    read_pumas(df1_3, observations = [:dv_cp, :dv_ef], covariates = [:fu, :group])

pop_3 = [pop12; pop_3_unbound]

## Simulation
Random.seed!(12345)
sim3 = simobs(
    pk_50,
    pop_3,
    param,
    obstimes = [
        0.1,
        0.25,
        0.5,
        0.75,
        1.0,
        2,
        3,
        4,
        4.999,
        5.03,
        5.08,
        5.17,
        5.25,
        5.5,
        5.75,
        6,
        6.5,
        7,
        8,
        9,
        10,
        12,
        24,
    ],
)
df_sim3 = DataFrame(sim3)

@chain df_sim3 begin
    dropmissing!(:cp)
    data(_) *
    mapping(
        :time => "Time (hrs)",
        :cp => "Concentration (μg/L)",
        color = :group => "",
        group = :id,
    ) *
    visual(Lines, linewidth = 2)
    draw(;
        axis = (;
            xticks = 0:5:25,
            yscale = log10,
            ytickformat = i -> (@. string(round(i; sigdigits = 1))),
        ),
        figure = (; fontsize = 22),
    )
end

Question - 4

  1. What exposure is needed in the new 1 + 23 hours infusion study to establish a response greater than one(1) Response unit?

Ans: The new 1 + 23 hr infusion chosen to achieve a steady-state concentration of 30 μg/L will help to achieve a response greater than 1 unit.

@chain df_sim3 begin
    dropmissing!(:cp)
    data(_) *
    mapping(
        :cp => "Concentration (μg/L)",
        :ef => "Response",
        color = :group => "",
        group = :id,
    ) *
    visual(Lines, linewidth = 2)
    draw(;
        axis = (; xscale = log10, xtickformat = i -> (@. string(round(i; sigdigits = 1)))),
        figure = (; fontsize = 22),
    )
end