A Comprehensive Introduction to Pumas

Authors

Vijay Ivaturi

Jose Storopoli

This tutorial provides a comprehensive introduction to a modeling and simulation workflow in Pumas. The idea is not to get into the details of Pumas specifics, but instead provide a narrative on the lines of a regular workflow in our day-to-day work, with brevity where required to allow a broad overview. Wherever possible, cross-references will be provided to documentation and detailed examples that provide deeper insight into a particular topic.

As part of this workflow, you will be introduced to various aspects such as:

  1. Data wrangling in Julia
  2. Exploratory analysis in Julia
  3. Continuous data non-linear mixed effects modeling in Pumas
  4. Model comparison routines, post-processing, validation etc.

1 The Study and Design

CTMNopain is a novel anti-inflammatory agent under preliminary investigation. A dose-ranging trial was conducted comparing placebo with 3 doses of CTMNopain (5mg, 20mg and 80 mg QD). The maximum tolerated dose is 160 mg per day. Plasma concentrations (mg/L) of the drug were measured at 0, 0.5, 1, 1.5, 2, 2.5, 3-8 hours.

Pain score (0=no pain, 1=mild, 2=moderate, 3=severe) were obtained at time points when plasma concentration was collected. A pain score of 2 or more is considered as no pain relief.

The subjects can request for remedication if pain relief is not achieved after 2 hours post dose. Some subjects had remedication before 2 hours if they were not able to bear the pain. The time to remedication and the remedication status is available for subjects.

The pharmacokinetic dataset can be accessed using PharmaDatasets.jl.

2 Setup

2.1 Load libraries

These libraries provide the workhorse functionality in the Pumas ecosystem:

using Pumas
using PumasUtilities
using NCA
using NCAUtilities

In addition, libraries below are good add-on’s that provide ancillary functionality:

using GLM: lm, @formula
using Random
using CSV
using DataFramesMeta
using CairoMakie
using PharmaDatasets

2.2 Data Wrangling

We start by reading in the dataset and making some quick summaries.

Tip

If you want to learn more about data wrangling, don’t forget to check our Data Wrangling in Julia tutorials!

pkpain_df = dataset("pk_painrelief")
first(pkpain_df, 5)
5×7 DataFrame
Row Subject Time Conc PainRelief PainScore RemedStatus Dose
Int64 Float64 Float64 Int64 Int64 Int64 String7
1 1 0.0 0.0 0 3 1 20 mg
2 1 0.5 1.15578 1 1 0 20 mg
3 1 1.0 1.37211 1 0 0 20 mg
4 1 1.5 1.30058 1 0 0 20 mg
5 1 2.0 1.19195 1 1 0 20 mg

Let’s filter out the placebo data as we don’t need that for the PK analysis.

pkpain_noplb_df = @rsubset pkpain_df :Dose != "Placebo";
first(pkpain_noplb_df, 5)
5×7 DataFrame
Row Subject Time Conc PainRelief PainScore RemedStatus Dose
Int64 Float64 Float64 Int64 Int64 Int64 String7
1 1 0.0 0.0 0 3 1 20 mg
2 1 0.5 1.15578 1 1 0 20 mg
3 1 1.0 1.37211 1 0 0 20 mg
4 1 1.5 1.30058 1 0 0 20 mg
5 1 2.0 1.19195 1 1 0 20 mg

3 Analysis

3.1 Non-compartmental analysis

Let’s begin by performing a quick NCA of the concentration time profiles and view the exposure changes across doses. The input data specification for NCA analysis requires the presence of a :route column and an :amt column that specifies the dose. So, let’s add that in:

@rtransform! pkpain_noplb_df begin
    :route = "ev"
    :Dose = parse(Int, chop(:Dose; tail = 3))
end

We also need to create an :amt column:

@rtransform! pkpain_noplb_df :amt = :Time == 0 ? :Dose : missing

Now, we map the data variables to the read_nca function that prepares the data for NCA analysis.

pkpain_nca = read_nca(
    pkpain_noplb_df;
    id = :Subject,
    time = :Time,
    amt = :amt,
    observations = :Conc,
    group = [:Dose],
    route = :route,
)
NCAPopulation (120 subjects):
  Group: [["Dose" => 5], ["Dose" => 20], ["Dose" => 80]]
  Number of missing observations: 0
  Number of blq observations: 0

Now that we mapped the data in, let’s visualize the concentration vs time plots for a few individuals. When paginate is set to true, a vector of plots are returned and below we display the first element with 9 individuals.

f = observations_vs_time(
    pkpain_nca;
    paginate = true,
    axis = (; xlabel = "Time (hr)", ylabel = "CTMNoPain Concentration (ng/mL)"),
    facet = (; combinelabels = true),
)
f[1]

An observations versus time profile for all subjects

Observations versus Time

or you can view the summary curves by dose group as passed in to the group argument in read_nca

summary_observations_vs_time(
    pkpain_nca,
    figure = (; fontsize = 22, resolution = (800, 1000)),
    color = "black",
    linewidth = 3,
    axis = (; xlabel = "Time (hr)", ylabel = "CTMX Concentration (μg/mL)"),
    facet = (; combinelabels = true, linkaxes = true),
)

An observations versus time profile for all subjects in a summarized manner

Summary Observations versus Time

A full NCA Report is now obtained for completeness purposes using the run_nca function, but later we will only extract a couple of key metrics of interest.

pk_nca = run_nca(pkpain_nca; sigdigits = 3)

We can look at the NCA fits for some subjects. Here f is a vector or figures. We’ll showcase the first image by indexing f:

f = subject_fits(
    pk_nca,
    paginate = true,
    axis = (; xlabel = "Time (hr)", ylabel = "CTMX Concentration (μg/mL)"),
    facet = (; combinelabels = true, linkaxes = true),
)
f[1]

Trend plot with observations for all individual subjects over time

Subject Fits

As CTMNopain’s effect maybe mainly related to maximum concentration (cmax) or area under the curve (auc), we present some summary statistics using the summarize function from NCA.

strata = [:Dose]
1-element Vector{Symbol}:
 :Dose
params = [:cmax, :aucinf_obs]
2-element Vector{Symbol}:
 :cmax
 :aucinf_obs
output = summarize(pk_nca; stratify_by = strata, parameters = params)
6×10 DataFrame
Row Dose parameters numsamples minimum maximum mean std geomean geostd geomeanCV
Int64 String Int64 Float64 Float64 Float64 Float64 Float64 Float64 Float64
1 5 cmax 40 0.19 0.539 0.356075 0.0884129 0.345104 1.2932 26.1425
2 5 aucinf_obs 40 0.914 3.4 1.5979 0.490197 1.53373 1.32974 29.0868
3 20 cmax 40 0.933 2.7 1.4737 0.361871 1.43408 1.2633 23.6954
4 20 aucinf_obs 40 2.77 14.1 6.377 2.22239 6.02031 1.41363 35.6797
5 80 cmax 40 3.3 8.47 5.787 1.31957 5.64164 1.25757 23.2228
6 80 aucinf_obs 40 13.7 49.1 29.5 8.68984 28.2954 1.34152 30.0258

The statistics printed above are the default, but you can pass in your own statistics using the stats = [] argument to the summarize function.

We can look at a few parameter distribution plots.

parameters_vs_group(
    pk_nca,
    parameter = :cmax,
    axis = (; xlabel = "Dose (mg)", ylabel = "Cₘₐₓ (ng/mL)"),
    figure = (; fontsize = 18),
)

A violin plot for the Cmax distribution for each dose group

Cmax for each Dose Group

Dose normalized PK parameters, cmax and aucinf were essentially dose proportional between for 5 mg, 20 mg and 80 mg doses. You can perform a simple regression to check the impact of dose on cmax:

dp = NCA.DoseLinearityPowerModel(pk_nca, :cmax; level = 0.9)
Dose Linearity Power Model
Variable: cmax
Model: log(cmax) ~ log(α) + β × log(dose)
────────────────────────────────────
   Estimate  low CI 90%  high CI 90%
────────────────────────────────────
β   1.00775     0.97571       1.0398
────────────────────────────────────

Here’s a visualization for the dose linearity using a power model for cmax:

power_model(dp)

A dose linearity power model plot for Cmax

Dose Linearity Plot

We can also visualize a dose proportionality results with respect to a specific endpoint in a NCA Report; for example cmax and aucinf_obs:

dose_vs_dose_normalized(pk_nca, :cmax)

A dose proportionality plot for Cmax

Dose Proportionality Plot
dose_vs_dose_normalized(pk_nca, :aucinf_obs)

A dose proportionality plot for AUC

Dose Proportionality Plot

Based on visual inspection of the concentration time profiles as seen earlier, CTMNopain exhibited monophasic decline, and perhaps a one compartment model best fits the PK data.

3.2 Pharmacokinetic modeling

As seen from the plots above, the concentrations decline monoexponentially. We will evaluate both one and two compartment structural models to assess best fit. Further, different residual error models will also be tested.

We will use the results from NCA to provide us good initial estimates.

3.2.1 Data preparation for modeling

PumasNDF requires the presence of :evid and :cmt columns in the dataset.

@rtransform! pkpain_noplb_df begin
    :evid = :Time == 0 ? 1 : 0
    :cmt = :Time == 0 ? 1 : 2
    :cmt2 = 1 # for zero order absorption
end

Further, observations at time of dosing, i.e., when evid = 1 have to be missing

@rtransform! pkpain_noplb_df :Conc = :evid == 1 ? missing : :Conc

The dataframe will now be converted to a Population using read_pumas. Note that both observations and covariates are required to be an array even if it is one element.

pkpain_noplb = read_pumas(
    pkpain_noplb_df;
    id = :Subject,
    time = :Time,
    amt = :amt,
    observations = [:Conc],
    covariates = [:Dose],
    evid = :evid,
    cmt = :cmt,
)
Population
  Subjects: 120
  Covariates: Dose
  Observations: Conc

Now that the data is transformed to a Population of subjects, we can explore different models.

3.2.2 One-compartment model

Note

If you are not familiar yet with the @model blocks and syntax, please check our documentation.

pk_1cmp = @model begin

    @metadata begin
        desc = "One Compartment Model"
        timeu = u"hr"
    end

    @param begin
        """
        Clearance (L/hr)
        """
        tvcl  RealDomain(; lower = 0, init = 3.2)
        """
        Volume (L)
        """
        tvv  RealDomain(; lower = 0, init = 16.4)
        """
        Absorption rate constant (h-1)
        """
        tvka  RealDomain(; lower = 0, init = 3.8)
        """
          - ΩCL
          - ΩVc
          - ΩKa
        """
        Ω  PDiagDomain(init = [0.04, 0.04, 0.04])
        """
        Proportional RUV
        """
        σ_p  RealDomain(; lower = 0.0001, init = 0.2)
    end

    @random begin
        η ~ MvNormal(Ω)
    end

    @covariates begin
        """
        Dose (mg)
        """
        Dose
    end

    @pre begin
        CL = tvcl * exp(η[1])
        Vc = tvv * exp(η[2])
        Ka = tvka * exp(η[3])
    end

    @dynamics Depots1Central1

    @derived begin
        cp := @. Central / Vc
        """
        CTMx Concentration (ng/mL)
        """
        Conc ~ @. Normal(cp, abs(cp) * σ_p)
    end

end
PumasModel
  Parameters: tvcl, tvv, tvka, Ω, σ_p
  Random effects: η
  Covariates: Dose
  Dynamical system variables: Depot, Central
  Dynamical system type: Closed form
  Derived: Conc
  Observed: Conc
Tip

Note that the local assignment := can be used to define intermediate statements that will not be carried outside of the block. This means that all the resulting data workflows from this model will not contain the intermediate variables defined with :=. We use this when we want to suppress the variable from any further output.

The idea behind := is for performance reasons. If you are not carrying the variable defined with := outside of the block, then it is not necessary to store it in the resulting data structures. Not only will your model run faster, but the resulting data structures will also be smaller.

Before going to fit the model, let’s evaluate some helpful steps via simulation to check appropriateness of data and model

# zero out the random effects
etas = zero_randeffs(pk_1cmp, init_params(pk_1cmp), pkpain_noplb)

Above, we are generating a vector of η’s of the same length as the number of subjects to zero out the random effects. We do this as we are evaluating the trajectories of the concentrations at the initial set of parameters at a population level. Other helper functions here are sample_randeffs and init_randeffs. Please refer to the documentation.

simpk_iparams = simobs(pk_1cmp, pkpain_noplb, init_params(pk_1cmp), etas)
Simulated population (Vector{<:Subject})
  Simulated subjects: 120
  Simulated variables: Conc
sim_plot(
    pk_1cmp,
    simpk_iparams;
    observations = [:Conc],
    figure = (; fontsize = 18),
    axis = (;
        xlabel = "Time (hr)",
        ylabel = "Observed/Predicted \n CTMx Concentration (ng/mL)",
    ),
)

A simulated observations versus time plot overlaid with the scatter plot of the observed observations

Simulated Observations Plot

Our NCA based initial guess on the parameters seem to work well.

Lets change the initial estimate of a couple of the parameters to evaluate the sensitivity.

pkparam = (; init_params(pk_1cmp)..., tvka = 2, tvv = 10)
(tvcl = 3.2,
 tvv = 10,
 tvka = 2,
 Ω = [0.04 0.0 0.0; 0.0 0.04 0.0; 0.0 0.0 0.04],
 σ_p = 0.2,)
simpk_changedpars = simobs(pk_1cmp, pkpain_noplb, pkparam, etas)
Simulated population (Vector{<:Subject})
  Simulated subjects: 120
  Simulated variables: Conc
sim_plot(
    pk_1cmp,
    simpk_changedpars;
    observations = [:Conc],
    figure = (; fontsize = 18),
    axis = (
        xlabel = "Time (hr)",
        ylabel = "Observed/Predicted \n CTMx Concentration (ng/mL)",
    ),
)

A simulated observations versus time plot overlaid with the scatter plot of the observed observations

Simulated Observations Plot

Changing the tvka and decreasing the tvv seemed to make an impact and observations go through the simulated lines.

To get a quick ballpark estimate of your PK parameters, we can do a NaivePooled analysis.

3.2.2.1 NaivePooled
pkfit_np = fit(pk_1cmp, pkpain_noplb, init_params(pk_1cmp), NaivePooled(); omegas = (:Ω,))
[ Info: Checking the initial parameter values.
[ Info: The initial negative log likelihood and its gradient are finite. Check passed.
Iter     Function value   Gradient norm 
     0     7.744356e+02     3.715711e+03
 * time: 0.026766061782836914
     1     2.343899e+02     1.747348e+03
 * time: 0.4976530075073242
     2     9.696232e+01     1.198088e+03
 * time: 0.4996790885925293
     3    -7.818699e+01     5.538151e+02
 * time: 0.5012938976287842
     4    -1.234803e+02     2.462514e+02
 * time: 0.5029759407043457
     5    -1.372888e+02     2.067458e+02
 * time: 0.5046780109405518
     6    -1.410579e+02     1.162950e+02
 * time: 0.5551629066467285
     7    -1.434754e+02     5.632816e+01
 * time: 0.5564119815826416
     8    -1.453401e+02     7.859270e+01
 * time: 0.5575258731842041
     9    -1.498185e+02     1.455606e+02
 * time: 0.5586040019989014
    10    -1.534371e+02     1.303682e+02
 * time: 0.5597009658813477
    11    -1.563557e+02     5.975474e+01
 * time: 0.5607888698577881
    12    -1.575052e+02     9.308611e+00
 * time: 0.5620739459991455
    13    -1.579357e+02     1.234484e+01
 * time: 0.5636448860168457
    14    -1.581874e+02     7.478196e+00
 * time: 0.565234899520874
    15    -1.582981e+02     2.027162e+00
 * time: 0.5668668746948242
    16    -1.583375e+02     5.578262e+00
 * time: 0.5684390068054199
    17    -1.583556e+02     4.727050e+00
 * time: 0.5700418949127197
    18    -1.583644e+02     2.340173e+00
 * time: 0.5716519355773926
    19    -1.583680e+02     7.738100e-01
 * time: 0.5735750198364258
    20    -1.583696e+02     3.300689e-01
 * time: 0.5752630233764648
    21    -1.583704e+02     3.641985e-01
 * time: 0.5770928859710693
    22    -1.583707e+02     4.365901e-01
 * time: 0.5788829326629639
    23    -1.583709e+02     3.887800e-01
 * time: 0.580543041229248
    24    -1.583710e+02     2.766977e-01
 * time: 0.5821409225463867
    25    -1.583710e+02     1.758029e-01
 * time: 0.5838029384613037
    26    -1.583710e+02     1.133947e-01
 * time: 0.5854370594024658
    27    -1.583710e+02     7.922544e-02
 * time: 0.5869929790496826
    28    -1.583710e+02     5.954998e-02
 * time: 0.5885839462280273
    29    -1.583710e+02     4.157079e-02
 * time: 0.5901889801025391
    30    -1.583710e+02     4.295447e-02
 * time: 0.5918159484863281
    31    -1.583710e+02     5.170753e-02
 * time: 0.5934419631958008
    32    -1.583710e+02     2.644383e-02
 * time: 0.5954558849334717
    33    -1.583710e+02     4.548993e-03
 * time: 0.5973970890045166
    34    -1.583710e+02     2.501804e-02
 * time: 0.5995140075683594
    35    -1.583710e+02     3.763440e-02
 * time: 0.601172924041748
    36    -1.583710e+02     3.206026e-02
 * time: 0.6028480529785156
    37    -1.583710e+02     1.003698e-02
 * time: 0.604496955871582
    38    -1.583710e+02     2.209089e-02
 * time: 0.6061689853668213
    39    -1.583710e+02     4.954172e-03
 * time: 0.6078689098358154
    40    -1.583710e+02     1.609373e-02
 * time: 0.6099510192871094
    41    -1.583710e+02     1.579802e-02
 * time: 0.6115579605102539
    42    -1.583710e+02     1.014113e-03
 * time: 0.6131930351257324
    43    -1.583710e+02     6.050644e-03
 * time: 0.6152610778808594
    44    -1.583710e+02     1.354412e-02
 * time: 0.616919994354248
    45    -1.583710e+02     4.473248e-03
 * time: 0.6558220386505127
    46    -1.583710e+02     4.644735e-03
 * time: 0.657249927520752
    47    -1.583710e+02     9.829910e-03
 * time: 0.6583340167999268
    48    -1.583710e+02     1.047561e-03
 * time: 0.6594228744506836
    49    -1.583710e+02     8.366895e-03
 * time: 0.6604878902435303
    50    -1.583710e+02     7.879055e-04
 * time: 0.6616060733795166
FittedPumasModel

Successful minimization:                      true

Likelihood approximation:              NaivePooled
Likelihood Optimizer:                         BFGS
Dynamical system type:                 Closed form

Log-likelihood value:                    158.37103
Number of subjects:                            120
Number of parameters:         Fixed      Optimized
                                  1              6
Observation records:         Active        Missing
    Conc:                      1320              0
    Total:                     1320              0

------------------
         Estimate
------------------
tvcl      3.0054
tvv      14.089
tvka     44.228
Ω₁,₁      0.0
Ω₂,₂      0.0
Ω₃,₃      0.0
σ_p       0.32999
------------------
coefficients_table(pkfit_np)
7×3 DataFrame
Row Parameter Description Estimate
String Abstract… Float64
1 tvcl Clearance (L/hr)\n 3.005
2 tvv Volume (L)\n 14.089
3 tvka Absorption rate constant (h-1)\n 44.228
4 Ω₁,₁ ΩCL 0.0
5 Ω₂,₂ ΩVc 0.0
6 Ω₃,₃ ΩKa 0.0
7 σ_p Proportional RUV\n 0.33

The final estimates from the NaivePooled approach seem reasonably close to our initial guess from NCA, except for the tvka parameter. We will stick with our initial guess.

One way to be cautious before going into a complete fitting routine is to evaluate the likelihood of the individual subjects given the initial parameter values and see if any subject(s) pops out as unreasonable. There are a few ways of doing this:

  • check the loglikelihood subject wise
  • check if there any influential subjects

Below, we are basically checking if the initial estimates for any subject are way off that we are unable to compute the initial loglikelihood.

lls = []
for subj in pkpain_noplb
    push!(lls, loglikelihood(pk_1cmp, subj, pkparam, FOCE()))
end
# the plot below is using native CairoMakie `hist`
hist(lls; bins = 10, normalization = :none, color = (:black, 0.5), x_gap = 0)

A histogram of the individual loglikelihoods

Histogram of Loglikelihoods

The distribution of the loglikelihood’s suggest no extreme outliers.

A more convenient way is to use the findinfluential function that provides a list of k top influential subjects by showing the normalized (minus) loglikelihood for each subject. As you can see below, the minus loglikelihood in the range of 16 agrees with the histogram plotted above.

influential_subjects = findinfluential(pk_1cmp, pkpain_noplb, pkparam, FOCE())
120-element Vector{NamedTuple{(:id, :nll), Tuple{String, Float64}}}:
 (id = "148", nll = 16.65965885684477)
 (id = "135", nll = 16.64898519007633)
 (id = "156", nll = 15.959069556607496)
 (id = "159", nll = 15.441218240496486)
 (id = "149", nll = 14.715134644119509)
 (id = "88", nll = 13.09709837464614)
 (id = "16", nll = 12.98228052193144)
 (id = "61", nll = 12.652182902303679)
 (id = "71", nll = 12.500330088085505)
 (id = "59", nll = 12.241510254805235)
 ⋮
 (id = "57", nll = -22.79767423253431)
 (id = "93", nll = -22.836900711478208)
 (id = "12", nll = -23.007742339519247)
 (id = "123", nll = -23.292751843079234)
 (id = "41", nll = -23.425412534960515)
 (id = "99", nll = -23.535214841901112)
 (id = "29", nll = -24.025959868383083)
 (id = "52", nll = -24.164757842493685)
 (id = "24", nll = -25.57209232565845)
3.2.2.2 FOCE

Now that we have a good handle on our data, lets go ahead and fit a population model with FOCE:

pkfit_1cmp = fit(pk_1cmp, pkpain_noplb, pkparam, FOCE(); constantcoef = (; tvka = 2))
[ Info: Checking the initial parameter values.
[ Info: The initial negative log likelihood and its gradient are finite. Check passed.
Iter     Function value   Gradient norm 
     0    -5.935351e+02     5.597318e+02
 * time: 8.296966552734375e-5
     1    -7.022088e+02     1.707063e+02
 * time: 0.20783185958862305
     2    -7.314067e+02     2.903269e+02
 * time: 0.30812597274780273
     3    -8.520591e+02     2.285888e+02
 * time: 0.4109029769897461
     4    -1.120191e+03     3.795410e+02
 * time: 0.6144449710845947
     5    -1.178784e+03     2.323978e+02
 * time: 0.708690881729126
     6    -1.218320e+03     9.699907e+01
 * time: 0.7945859432220459
     7    -1.223641e+03     5.862105e+01
 * time: 0.8768119812011719
     8    -1.227620e+03     1.831403e+01
 * time: 0.9596998691558838
     9    -1.228381e+03     2.132323e+01
 * time: 1.0385079383850098
    10    -1.230098e+03     2.921228e+01
 * time: 1.1187078952789307
    11    -1.230854e+03     2.029662e+01
 * time: 1.2044639587402344
    12    -1.231116e+03     5.229097e+00
 * time: 1.2802090644836426
    13    -1.231179e+03     1.689232e+00
 * time: 1.3406670093536377
    14    -1.231187e+03     1.215379e+00
 * time: 1.4132559299468994
    15    -1.231188e+03     2.770380e-01
 * time: 1.4812140464782715
    16    -1.231188e+03     1.636653e-01
 * time: 1.5407640933990479
    17    -1.231188e+03     2.701133e-01
 * time: 1.6017448902130127
    18    -1.231188e+03     3.163363e-01
 * time: 1.649095058441162
    19    -1.231188e+03     1.505149e-01
 * time: 1.7093169689178467
    20    -1.231188e+03     2.484999e-02
 * time: 1.765408992767334
    21    -1.231188e+03     8.446863e-04
 * time: 1.8042089939117432
FittedPumasModel

Successful minimization:                      true

Likelihood approximation:                     FOCE
Likelihood Optimizer:                         BFGS
Dynamical system type:                 Closed form

Log-likelihood value:                     1231.188
Number of subjects:                            120
Number of parameters:         Fixed      Optimized
                                  1              6
Observation records:         Active        Missing
    Conc:                      1320              0
    Total:                     1320              0

-------------------
         Estimate
-------------------
tvcl      3.1642
tvv      13.288
tvka      2.0
Ω₁,₁      0.08494
Ω₂,₂      0.048568
Ω₃,₃      5.5811
σ_p       0.10093
-------------------
infer(pkfit_1cmp)
[ Info: Calculating: variance-covariance matrix.
[ Info: Done.
Asymptotic inference results using sandwich estimator

Successful minimization:                      true

Likelihood approximation:                     FOCE
Likelihood Optimizer:                         BFGS
Dynamical system type:                 Closed form

Log-likelihood value:                     1231.188
Number of subjects:                            120
Number of parameters:         Fixed      Optimized
                                  1              6
Observation records:         Active        Missing
    Conc:                      1320              0
    Total:                     1320              0

-------------------------------------------------------------------
        Estimate           SE                     95.0% C.I.
-------------------------------------------------------------------
tvcl     3.1642          0.086619         [ 2.9944  ;  3.334   ]
tvv     13.288           0.27481          [12.749   ; 13.827   ]
tvka     2.0             NaN              [  NaN    ;   NaN      ]
Ω₁,₁     0.08494         0.011022         [ 0.063338;  0.10654 ]
Ω₂,₂     0.048568        0.0063501        [ 0.036122;  0.061014]
Ω₃,₃     5.5811          1.2194           [ 3.1911  ;  7.9711  ]
σ_p      0.10093         0.0057196        [ 0.089718;  0.11214 ]
-------------------------------------------------------------------

Notice that tvka is fixed to 2 as we don’t have a lot of information before tmax. From the results above, we see that the parameter precision for this model is reasonable.

3.2.3 Two-compartment model

Just to be sure, let’s fit a 2-compartment model and evaluate:

pk_2cmp = @model begin

    @param begin
        """
        Clearance (L/hr)
        """
        tvcl  RealDomain(; lower = 0, init = 3.2)
        """
        Central Volume (L)
        """
        tvv  RealDomain(; lower = 0, init = 16.4)
        """
        Peripheral Volume (L)
        """
        tvvp  RealDomain(; lower = 0, init = 10)
        """
        Distributional Clearance (L/hr)
        """
        tvq  RealDomain(; lower = 0, init = 2)
        """
        Absorption rate constant (h-1)
        """
        tvka  RealDomain(; lower = 0, init = 1.3)
        """
          - ΩCL
          - ΩVc
          - ΩKa
          - ΩVp
          - ΩQ
        """
        Ω  PDiagDomain(init = [0.04, 0.04, 0.04, 0.04, 0.04])
        """
        Proportional RUV
        """
        σ_p  RealDomain(; lower = 0.0001, init = 0.2)
    end

    @random begin
        η ~ MvNormal(Ω)
    end

    @covariates begin
        """
        Dose (mg)
        """
        Dose
    end

    @pre begin
        CL = tvcl * exp(η[1])
        Vc = tvv * exp(η[2])
        Ka = tvka * exp(η[3])
        Vp = tvvp * exp(η[4])
        Q = tvq * exp(η[5])
    end

    @dynamics Depots1Central1Periph1

    @derived begin
        cp := @. Central / Vc
        """
        CTMx Concentration (ng/mL)
        """
        Conc ~ @. Normal(cp, cp * σ_p)
    end
end
PumasModel
  Parameters: tvcl, tvv, tvvp, tvq, tvka, Ω, σ_p
  Random effects: η
  Covariates: Dose
  Dynamical system variables: Depot, Central, Peripheral
  Dynamical system type: Closed form
  Derived: Conc
  Observed: Conc
3.2.3.1 FOCE
pkfit_2cmp =
    fit(pk_2cmp, pkpain_noplb, init_params(pk_2cmp), FOCE(); constantcoef = (; tvka = 2))
[ Info: Checking the initial parameter values.
[ Info: The initial negative log likelihood and its gradient are finite. Check passed.
Iter     Function value   Gradient norm 
     0    -6.302369e+02     1.021050e+03
 * time: 7.009506225585938e-5
     1    -9.197817e+02     9.927951e+02
 * time: 0.2316291332244873
     2    -1.372640e+03     2.054986e+02
 * time: 0.4178810119628906
     3    -1.446326e+03     1.543987e+02
 * time: 0.6274740695953369
     4    -1.545570e+03     1.855028e+02
 * time: 0.8226001262664795
     5    -1.581449e+03     1.713157e+02
 * time: 1.1153671741485596
     6    -1.639433e+03     1.257382e+02
 * time: 1.314897060394287
     7    -1.695964e+03     7.450539e+01
 * time: 1.5016250610351562
     8    -1.722243e+03     5.961044e+01
 * time: 1.7025911808013916
     9    -1.736883e+03     7.320921e+01
 * time: 1.8853960037231445
    10    -1.753547e+03     7.501938e+01
 * time: 2.0762460231781006
    11    -1.764053e+03     6.185661e+01
 * time: 2.2891762256622314
    12    -1.778991e+03     4.831033e+01
 * time: 2.4988701343536377
    13    -1.791492e+03     4.943278e+01
 * time: 2.7384450435638428
    14    -1.799847e+03     2.871410e+01
 * time: 2.9735631942749023
    15    -1.805374e+03     7.520789e+01
 * time: 3.207710027694702
    16    -1.816260e+03     2.990621e+01
 * time: 3.419020175933838
    17    -1.818252e+03     2.401915e+01
 * time: 3.6309170722961426
    18    -1.822988e+03     2.587225e+01
 * time: 3.8329060077667236
    19    -1.824653e+03     1.550517e+01
 * time: 4.039568185806274
    20    -1.826074e+03     1.788927e+01
 * time: 4.233752012252808
    21    -1.826821e+03     1.888389e+01
 * time: 4.445890188217163
    22    -1.827900e+03     1.432840e+01
 * time: 4.645512104034424
    23    -1.828511e+03     9.422040e+00
 * time: 4.860310077667236
    24    -1.828754e+03     5.363444e+00
 * time: 5.071684122085571
    25    -1.828862e+03     4.916167e+00
 * time: 5.286909103393555
    26    -1.829007e+03     4.695750e+00
 * time: 5.4859092235565186
    27    -1.829358e+03     1.090245e+01
 * time: 5.692968130111694
    28    -1.829830e+03     1.451320e+01
 * time: 5.9144251346588135
    29    -1.830201e+03     1.108694e+01
 * time: 6.140575170516968
    30    -1.830360e+03     2.892320e+00
 * time: 6.346736192703247
    31    -1.830390e+03     1.699267e+00
 * time: 6.559553146362305
    32    -1.830404e+03     1.602159e+00
 * time: 6.749340057373047
    33    -1.830432e+03     2.822847e+00
 * time: 6.945397138595581
    34    -1.830475e+03     4.105639e+00
 * time: 7.164409160614014
    35    -1.830527e+03     5.093685e+00
 * time: 7.366429090499878
    36    -1.830592e+03     2.697353e+00
 * time: 7.584075212478638
    37    -1.830615e+03     3.468352e+00
 * time: 7.785872220993042
    38    -1.830623e+03     2.594581e+00
 * time: 7.998565196990967
    39    -1.830625e+03     1.770110e+00
 * time: 8.206013202667236
    40    -1.830627e+03     1.040041e+00
 * time: 8.385918140411377
    41    -1.830628e+03     1.124112e+00
 * time: 8.588779211044312
    42    -1.830628e+03     3.547258e-01
 * time: 8.770697116851807
    43    -1.830629e+03     4.070652e-01
 * time: 8.946278095245361
    44    -1.830630e+03     7.177755e-01
 * time: 9.1458420753479
    45    -1.830630e+03     5.121219e-01
 * time: 9.324467182159424
    46    -1.830630e+03     9.584921e-02
 * time: 9.500436067581177
    47    -1.830630e+03     1.039362e-02
 * time: 9.659080028533936
    48    -1.830630e+03     5.788836e-03
 * time: 9.809008121490479
    49    -1.830630e+03     6.037375e-03
 * time: 9.957494020462036
    50    -1.830630e+03     7.187933e-03
 * time: 10.107605218887329
    51    -1.830630e+03     7.187933e-03
 * time: 10.320370197296143
    52    -1.830630e+03     7.187933e-03
 * time: 10.516804218292236
    53    -1.830630e+03     7.212102e-03
 * time: 10.709197044372559
    54    -1.830630e+03     7.214659e-03
 * time: 10.886619091033936
    55    -1.830630e+03     7.217015e-03
 * time: 11.067561149597168
    56    -1.830630e+03     7.219581e-03
 * time: 11.264463186264038
    57    -1.830630e+03     7.222151e-03
 * time: 11.442285060882568
    58    -1.830630e+03     7.224724e-03
 * time: 11.623488187789917
    59    -1.830630e+03     7.227302e-03
 * time: 11.821527004241943
    60    -1.830630e+03     7.227561e-03
 * time: 12.005751132965088
    61    -1.830630e+03     7.227819e-03
 * time: 12.193777084350586
    62    -1.830630e+03     7.228077e-03
 * time: 12.39099907875061
    63    -1.830630e+03     7.228103e-03
 * time: 12.579838037490845
    64    -1.830630e+03     7.228129e-03
 * time: 12.783632040023804
    65    -1.830630e+03     7.228155e-03
 * time: 12.97727108001709
    66    -1.830630e+03     7.228180e-03
 * time: 13.183101177215576
    67    -1.830630e+03     7.228206e-03
 * time: 13.372436046600342
    68    -1.830630e+03     7.228209e-03
 * time: 13.588906049728394
    69    -1.830630e+03     7.228211e-03
 * time: 13.79707407951355
    70    -1.830630e+03     7.228214e-03
 * time: 13.98587417602539
    71    -1.830630e+03     7.228217e-03
 * time: 14.19002914428711
    72    -1.830630e+03     7.228217e-03
 * time: 14.385045051574707
    73    -1.830630e+03     7.228217e-03
 * time: 14.675770998001099
    74    -1.830630e+03     7.228217e-03
 * time: 15.021639108657837
    75    -1.830630e+03     7.228218e-03
 * time: 15.29368805885315
    76    -1.830630e+03     7.228218e-03
 * time: 15.553704023361206
    77    -1.830630e+03     7.228218e-03
 * time: 15.809790134429932
    78    -1.830630e+03     7.228218e-03
 * time: 16.060631036758423
    79    -1.830630e+03     7.228218e-03
 * time: 16.324639081954956
    80    -1.830630e+03     7.214381e-03
 * time: 16.512296199798584
    81    -1.830630e+03     7.214381e-03
 * time: 16.77218508720398
    82    -1.830630e+03     7.214381e-03
 * time: 17.05467200279236
    83    -1.830630e+03     7.214381e-03
 * time: 17.321096181869507
    84    -1.830630e+03     7.214381e-03
 * time: 17.585496187210083
FittedPumasModel

Successful minimization:                      true

Likelihood approximation:                     FOCE
Likelihood Optimizer:                         BFGS
Dynamical system type:                 Closed form

Log-likelihood value:                    1830.6304
Number of subjects:                            120
Number of parameters:         Fixed      Optimized
                                  1             10
Observation records:         Active        Missing
    Conc:                      1320              0
    Total:                     1320              0

-------------------
         Estimate
-------------------
tvcl      2.8138
tvv      11.005
tvvp      5.54
tvq       1.5159
tvka      2.0
Ω₁,₁      0.10267
Ω₂,₂      0.060776
Ω₃,₃      1.2012
Ω₄,₄      0.42349
Ω₅,₅      0.24473
σ_p       0.048405
-------------------

3.3 Comparing One- versus Two-compartment models

The 2-compartment model has a much lower objective function compared to the 1-compartment. Let’s compare the estimates from the 2 models using the compare_estimates function.

compare_estimates(; pkfit_1cmp, pkfit_2cmp)
11×3 DataFrame
Row parameter pkfit_1cmp pkfit_2cmp
String Float64? Float64?
1 tvcl 3.1642 2.81378
2 tvv 13.288 11.0046
3 tvka 2.0 2.0
4 Ω₁,₁ 0.0849405 0.102669
5 Ω₂,₂ 0.0485682 0.0607755
6 Ω₃,₃ 5.58107 1.20116
7 σ_p 0.100928 0.0484049
8 tvvp missing 5.53998
9 tvq missing 1.51591
10 Ω₄,₄ missing 0.423494
11 Ω₅,₅ missing 0.244732

We perform a likelihood ratio test to compare the two nested models. The test statistic and the \(p\)-value clearly indicate that a 2-compartment model should be preferred.

lrtest(pkfit_1cmp, pkfit_2cmp)
Statistic:          1200.0
Degrees of freedom:      4
P-value:               0.0

We should also compare the other metrics and statistics, such ηshrinkage, ϵshrinkage, aic, and bic using the metrics_table function.

@chain metrics_table(pkfit_2cmp) begin
    leftjoin(metrics_table(pkfit_1cmp); on = :Metric, makeunique = true)
    rename!(:Value => :pk2cmp, :Value_1 => :pk1cmp)
end
20×3 DataFrame
Row Metric pk2cmp pk1cmp
String Any Any
1 Successful true true
2 Estimation Time 17.586 1.804
3 Subjects 120 120
4 Fixed Parameters 1 1
5 Optimized Parameters 10 6
6 Conc Active Observations 1320 1320
7 Conc Missing Observations 0 0
8 Total Active Observations 1320 1320
9 Total Missing Observations 0 0
10 Likelihood Approximation Pumas.FOCE{Optim.NewtonTrustRegion{Float64}, Optim.Options{Float64, Nothing}} Pumas.FOCE{Optim.NewtonTrustRegion{Float64}, Optim.Options{Float64, Nothing}}
11 LogLikelihood (LL) 1830.63 1231.19
12 -2LL -3661.26 -2462.38
13 AIC -3641.26 -2450.38
14 BIC -3589.41 -2419.26
15 (η-shrinkage) η₁ 0.037 0.016
16 (η-shrinkage) η₂ 0.047 0.04
17 (η-shrinkage) η₃ 0.516 0.733
18 (ϵ-shrinkage) Conc 0.185 0.105
19 (η-shrinkage) η₄ 0.287 missing
20 (η-shrinkage) η₅ 0.154 missing

We next generate some goodness of fit plots to compare which model is performing better. To do this, we first inspect the diagnostics of our model fit.

res_inspect_1cmp = inspect(pkfit_1cmp)
[ Info: Calculating predictions.
[ Info: Calculating weighted residuals.
[ Info: Calculating empirical bayes.
[ Info: Evaluating individual parameters.
[ Info: Evaluating dose control parameters.
[ Info: Done.
FittedPumasModelInspection

Fitting was successful: true
Likehood approximation used for weighted residuals : Pumas.FOCE{Optim.NewtonTrustRegion{Float64}, Optim.Options{Float64, Nothing}}(Optim.NewtonTrustRegion{Float64}(1.0, 100.0, 1.4901161193847656e-8, 0.1, 0.25, 0.75, false), Optim.Options(x_abstol = 0.0, x_reltol = 0.0, f_abstol = 0.0, f_reltol = 0.0, g_abstol = 1.0e-5, g_reltol = 1.0e-8, outer_x_abstol = 0.0, outer_x_reltol = 0.0, outer_f_abstol = 0.0, outer_f_reltol = 0.0, outer_g_abstol = 1.0e-8, outer_g_reltol = 1.0e-8, f_calls_limit = 0, g_calls_limit = 0, h_calls_limit = 0, allow_f_increases = false, allow_outer_f_increases = true, successive_f_tol = 1, iterations = 1000, outer_iterations = 1000, store_trace = false, trace_simplex = false, show_trace = false, extended_trace = false, show_every = 1, time_limit = NaN, )
)
res_inspect_2cmp = inspect(pkfit_2cmp)
[ Info: Calculating predictions.
[ Info: Calculating weighted residuals.
[ Info: Calculating empirical bayes.
[ Info: Evaluating individual parameters.
[ Info: Evaluating dose control parameters.
[ Info: Done.
FittedPumasModelInspection

Fitting was successful: true
Likehood approximation used for weighted residuals : Pumas.FOCE{Optim.NewtonTrustRegion{Float64}, Optim.Options{Float64, Nothing}}(Optim.NewtonTrustRegion{Float64}(1.0, 100.0, 1.4901161193847656e-8, 0.1, 0.25, 0.75, false), Optim.Options(x_abstol = 0.0, x_reltol = 0.0, f_abstol = 0.0, f_reltol = 0.0, g_abstol = 1.0e-5, g_reltol = 1.0e-8, outer_x_abstol = 0.0, outer_x_reltol = 0.0, outer_f_abstol = 0.0, outer_f_reltol = 0.0, outer_g_abstol = 1.0e-8, outer_g_reltol = 1.0e-8, f_calls_limit = 0, g_calls_limit = 0, h_calls_limit = 0, allow_f_increases = false, allow_outer_f_increases = true, successive_f_tol = 1, iterations = 1000, outer_iterations = 1000, store_trace = false, trace_simplex = false, show_trace = false, extended_trace = false, show_every = 1, time_limit = NaN, )
)
gof_1cmp = goodness_of_fit(res_inspect_1cmp; figure = (; fontsize = 12))

A 4-mosaic goodness of fit plot showing the 1-compartment model

Goodness of Fit Plots
gof_2cmp = goodness_of_fit(res_inspect_2cmp; figure = (; fontsize = 12))

Trend plot with observations for all individual subjects over time

Subject Fits

These plots clearly indicate that the 2-compartment model is a better fit compared to the 1-compartment model.

We can look at selected sample of individual plots.

fig_subject_fits = subject_fits(
    res_inspect_2cmp;
    separate = true,
    paginate = true,
    facet = (; combinelabels = true),
    figure = (; fontsize = 18),
    axis = (; xlabel = "Time (hr)", ylabel = "CTMx Concentration (ng/mL)"),
)
fig_subject_fits[1]

Trend plot with observations for 4 individual subjects over time

Subject Fits for 4 Individuals

There a lot of important plotting functions you can use for your standard model diagnostics. Please make sure to read the documentation for plotting. Below, we are checking the distribution of the empirical Bayes estimates.

empirical_bayes_dist(res_inspect_2cmp; zeroline_color = :red)

A histogram for the empirical Bayes distribution of all subject-specific parameters

Empirical Bayes Distribution
empirical_bayes_vs_covariates(
    res_inspect_2cmp;
    categorical = [:Dose],
    figure = (; resolution = (600, 800)),
)

A histogram for the empirical Bayes distribution of all subject-specific parameters stratified by categorical covariates

Empirical Bayes Distribution Stratified by Covariates

Clearly, our guess at tvka seems off-target. Let’s try and estimate tvka instead of fixing it to 2:

pkfit_2cmp_unfix_ka = fit(pk_2cmp, pkpain_noplb, init_params(pk_2cmp), FOCE())
[ Info: Checking the initial parameter values.
[ Info: The initial negative log likelihood and its gradient are finite. Check passed.
Iter     Function value   Gradient norm 
     0    -3.200734e+02     1.272671e+03
 * time: 9.179115295410156e-5
     1    -8.682982e+02     1.000199e+03
 * time: 0.2515130043029785
     2    -1.381870e+03     5.008081e+02
 * time: 0.43483400344848633
     3    -1.551053e+03     6.833490e+02
 * time: 0.6496539115905762
     4    -1.680887e+03     1.834586e+02
 * time: 0.8517158031463623
     5    -1.726118e+03     8.870274e+01
 * time: 1.0524239540100098
     6    -1.761023e+03     1.162036e+02
 * time: 1.256809949874878
     7    -1.786619e+03     1.114552e+02
 * time: 1.4591748714447021
     8    -1.863556e+03     9.914305e+01
 * time: 1.6703059673309326
     9    -1.882942e+03     5.342676e+01
 * time: 1.8825349807739258
    10    -1.888020e+03     2.010181e+01
 * time: 2.0884039402008057
    11    -1.889832e+03     1.867263e+01
 * time: 2.3101279735565186
    12    -1.891649e+03     1.668512e+01
 * time: 2.505246877670288
    13    -1.892615e+03     1.820701e+01
 * time: 2.710768938064575
    14    -1.893453e+03     1.745195e+01
 * time: 2.916289806365967
    15    -1.894760e+03     1.850174e+01
 * time: 3.1224098205566406
    16    -1.895647e+03     1.773939e+01
 * time: 3.326152801513672
    17    -1.896597e+03     1.143462e+01
 * time: 3.5344769954681396
    18    -1.897114e+03     9.720097e+00
 * time: 3.7398529052734375
    19    -1.897373e+03     6.054321e+00
 * time: 3.9454619884490967
    20    -1.897498e+03     3.985954e+00
 * time: 4.134361982345581
    21    -1.897571e+03     4.262464e+00
 * time: 4.333568811416626
    22    -1.897633e+03     4.010234e+00
 * time: 4.535064935684204
    23    -1.897714e+03     4.805375e+00
 * time: 4.736138820648193
    24    -1.897802e+03     3.508706e+00
 * time: 4.937376976013184
    25    -1.897865e+03     3.691477e+00
 * time: 5.13475489616394
    26    -1.897900e+03     2.982720e+00
 * time: 5.313155889511108
    27    -1.897928e+03     2.563790e+00
 * time: 5.510150909423828
    28    -1.897968e+03     3.261485e+00
 * time: 5.70566987991333
    29    -1.898013e+03     3.064690e+00
 * time: 5.900296926498413
    30    -1.898040e+03     1.636525e+00
 * time: 6.081982851028442
    31    -1.898051e+03     1.439997e+00
 * time: 6.280400991439819
    32    -1.898057e+03     1.436504e+00
 * time: 6.474470853805542
    33    -1.898069e+03     1.881529e+00
 * time: 6.667884826660156
    34    -1.898095e+03     3.253165e+00
 * time: 6.850181818008423
    35    -1.898142e+03     4.257942e+00
 * time: 7.074469804763794
    36    -1.898199e+03     3.685241e+00
 * time: 7.273766994476318
    37    -1.898245e+03     2.567364e+00
 * time: 7.475966930389404
    38    -1.898246e+03     2.561588e+00
 * time: 7.763505935668945
    39    -1.898251e+03     2.530898e+00
 * time: 8.0169038772583
    40    -1.898298e+03     2.673689e+00
 * time: 8.225608825683594
    41    -1.898300e+03     2.795097e+00
 * time: 8.465049028396606
    42    -1.898337e+03     3.699678e+00
 * time: 8.750589847564697
    43    -1.898435e+03     4.257964e+00
 * time: 8.967885971069336
    44    -1.898437e+03     4.246435e+00
 * time: 9.266204833984375
    45    -1.898448e+03     3.821693e+00
 * time: 9.526943922042847
    46    -1.898477e+03     2.785717e+00
 * time: 9.73681092262268
    47    -1.898477e+03     2.730327e+00
 * time: 10.012123823165894
    48    -1.898478e+03     2.516907e+00
 * time: 10.26265001296997
    49    -1.898479e+03     1.935688e+00
 * time: 10.504621982574463
    50    -1.898479e+03     1.258213e+00
 * time: 10.755369901657104
    51    -1.898480e+03     9.887950e-01
 * time: 10.998169898986816
    52    -1.898480e+03     1.281807e+01
 * time: 11.227849006652832
    53    -1.898480e+03     2.556060e-01
 * time: 11.51050090789795
    54    -1.898480e+03     1.118572e-01
 * time: 11.765657901763916
    55    -1.898480e+03     1.118585e-01
 * time: 12.020663976669312
    56    -1.898480e+03     1.118595e-01
 * time: 12.291797876358032
    57    -1.898480e+03     7.041556e-02
 * time: 12.520057916641235
    58    -1.898480e+03     6.966559e-02
 * time: 12.69608187675476
    59    -1.898480e+03     6.385055e-02
 * time: 12.86320686340332
    60    -1.898480e+03     7.499060e-02
 * time: 13.031009912490845
    61    -1.898480e+03     7.742415e-02
 * time: 13.239248991012573
    62    -1.898480e+03     7.742304e-02
 * time: 13.466570854187012
    63    -1.898480e+03     7.742255e-02
 * time: 13.686180830001831
    64    -1.898480e+03     7.742192e-02
 * time: 13.909379005432129
    65    -1.898480e+03     7.742191e-02
 * time: 14.154387950897217
    66    -1.898480e+03     7.742191e-02
 * time: 14.389948844909668
    67    -1.898480e+03     7.742191e-02
 * time: 14.643712997436523
    68    -1.898480e+03     7.979269e-02
 * time: 14.875096797943115
    69    -1.898480e+03     7.979256e-02
 * time: 15.108335971832275
    70    -1.898480e+03     7.979253e-02
 * time: 15.371480941772461
    71    -1.898480e+03     7.979253e-02
 * time: 15.675747871398926
    72    -1.898480e+03     7.979253e-02
 * time: 15.964759826660156
    73    -1.898480e+03     7.979253e-02
 * time: 16.146328926086426
FittedPumasModel

Successful minimization:                      true

Likelihood approximation:                     FOCE
Likelihood Optimizer:                         BFGS
Dynamical system type:                 Closed form

Log-likelihood value:                    1898.4797
Number of subjects:                            120
Number of parameters:         Fixed      Optimized
                                  0             11
Observation records:         Active        Missing
    Conc:                      1320              0
    Total:                     1320              0

-------------------
         Estimate
-------------------
tvcl      2.6192
tvv      11.378
tvvp      8.4522
tvq       1.3163
tvka      4.8925
Ω₁,₁      0.13243
Ω₂,₂      0.059668
Ω₃,₃      0.41582
Ω₄,₄      0.080661
Ω₅,₅      0.25001
σ_p       0.049098
-------------------
compare_estimates(; pkfit_2cmp, pkfit_2cmp_unfix_ka)
11×3 DataFrame
Row parameter pkfit_2cmp pkfit_2cmp_unfix_ka
String Float64? Float64?
1 tvcl 2.81378 2.61918
2 tvv 11.0046 11.3783
3 tvvp 5.53998 8.45221
4 tvq 1.51591 1.31633
5 tvka 2.0 4.89247
6 Ω₁,₁ 0.102669 0.13243
7 Ω₂,₂ 0.0607755 0.0596677
8 Ω₃,₃ 1.20116 0.415822
9 Ω₄,₄ 0.423494 0.0806615
10 Ω₅,₅ 0.244732 0.250008
11 σ_p 0.0484049 0.0490976

Let’s revaluate the goodness of fits and η distribution plots.

Not much change in the general gof plots

res_inspect_2cmp_unfix_ka = inspect(pkfit_2cmp_unfix_ka)
[ Info: Calculating predictions.
[ Info: Calculating weighted residuals.
[ Info: Calculating empirical bayes.
[ Info: Evaluating individual parameters.
[ Info: Evaluating dose control parameters.
[ Info: Done.
FittedPumasModelInspection

Fitting was successful: true
Likehood approximation used for weighted residuals : Pumas.FOCE{Optim.NewtonTrustRegion{Float64}, Optim.Options{Float64, Nothing}}(Optim.NewtonTrustRegion{Float64}(1.0, 100.0, 1.4901161193847656e-8, 0.1, 0.25, 0.75, false), Optim.Options(x_abstol = 0.0, x_reltol = 0.0, f_abstol = 0.0, f_reltol = 0.0, g_abstol = 1.0e-5, g_reltol = 1.0e-8, outer_x_abstol = 0.0, outer_x_reltol = 0.0, outer_f_abstol = 0.0, outer_f_reltol = 0.0, outer_g_abstol = 1.0e-8, outer_g_reltol = 1.0e-8, f_calls_limit = 0, g_calls_limit = 0, h_calls_limit = 0, allow_f_increases = false, allow_outer_f_increases = true, successive_f_tol = 1, iterations = 1000, outer_iterations = 1000, store_trace = false, trace_simplex = false, show_trace = false, extended_trace = false, show_every = 1, time_limit = NaN, )
)
goodness_of_fit(res_inspect_2cmp_unfix_ka; figure = (; fontsize = 12))

A 4-mosaic goodness of fit plot showing the 2-compartment model

Goodness of Fit Plots

But you can see a huge improvement in the ηka, (η₃) distribution which is now centered around zero

empirical_bayes_vs_covariates(
    res_inspect_2cmp_unfix_ka;
    categorical = [:Dose],
    ebes = [:η₃],
    figure = (; resolution = (600, 800)),
)

A histogram for the empirical Bayes distribution of all subject-specific parameters stratified by categorical covariates

Empirical Bayes Distribution Stratified by Covariates

Finally looking at some individual plots for the same subjects as earlier:

fig_subject_fits2 = subject_fits(
    res_inspect_2cmp_unfix_ka;
    separate = true,
    paginate = true,
    facet = (; combinelabels = true, linkyaxes = false),
    figure = (; fontsize = 18),
    axis = (; xlabel = "Time (hr)", ylabel = "CTMx Concentration (ng/mL)"),
)
fig_subject_fits2[6]

Trend plot with observations for 4 individual subjects over time

Subject Fits for 4 Individuals

The randomly sampled individual fits don’t seem good in some individuals, but we can evaluate this via a vpc to see how to go about.

3.4 Visual Predictive Checks (VPC)

We can now perform a vpc to check. The default plots provide a 80% prediction interval and a 95% simulated CI (shaded area) around each of the quantiles

pk_vpc = vpc(
    pkfit_2cmp_unfix_ka,
    200;
    observations = [:Conc],
    stratify_by = [:Dose],
    ensemblealg = EnsembleThreads(), # multi-threading
)
[ Info: Continuous VPC
Visual Predictive Check
  Type of VPC: Continuous VPC
  Simulated populations: 200
  Subjects in data: 40
  Stratification variable(s): [:Dose]
  Confidence level: 0.95
  VPC lines: quantiles ([0.1, 0.5, 0.9])
vpc_plot(
    pk_2cmp,
    pk_vpc;
    rows = 1,
    columns = 3,
    figure = (; resolution = (1400, 1000), fontsize = 22),
    axis = (;
        xlabel = "Time (hr)",
        ylabel = "Observed/Predicted\n CTMx Concentration (ng/mL)",
    ),
    facet = (; combinelabels = true),
)

A visual predictive plot stratified by dose group

Visual Predictive Plots

The visual predictive check suggests that the model captures the data well across all dose levels.

4 Additional Help

If you have questions regarding this tutorial, please post them on our discourse site.